Using Lakehouse data at scale with Power BI. Featuring Power BI Direct Lake mode!

Benni De Jagere

JID CAT

Platinum partners	creat	CS.	M In S	n Summa		
Goud partners	Kimura	a P	plainwater de kracht van heldere data	KASPAROV FINANCE&BI		
Zilver partners	rockfeather		Dynamic People	GET RESPONSIVE		
Brons partners	HSO Quanto collective analytics	<i>macaw</i> ilionx	iąbs valcon			
Community partners	Connector		Tabular Editor	•‡ Datamanzi		
	volda;	ĐashĐata.	VisionBI	🙂 easydash		

Benni De Jagere

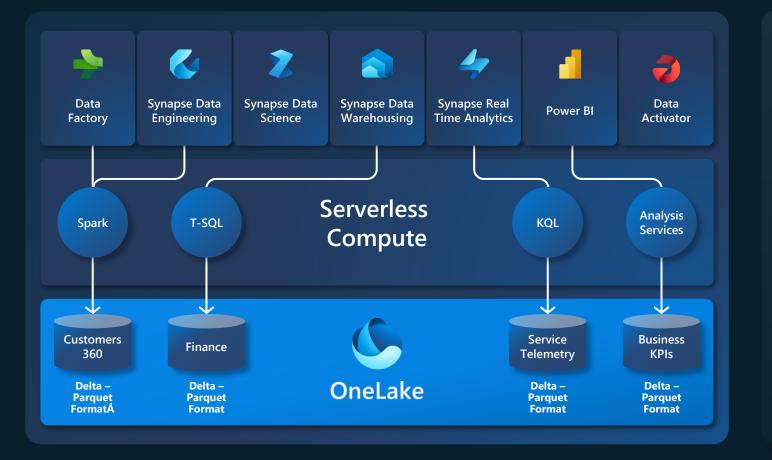
Senior Program Manager | Fabric Customer Advisory Team (FabricCAT)

Fabric CAT
.be Member
@BenniDeJagere
/bennidejagere
/bennidejagere
/bennidejagere
#SayNoToPieCharts

Session Objectives

Session Objectives

- Introduce Fabric and OneLake
- \cdot Set the scene for Direct Lake
- \cdot Take it for spin.. \bigcirc


Introducing Fabric

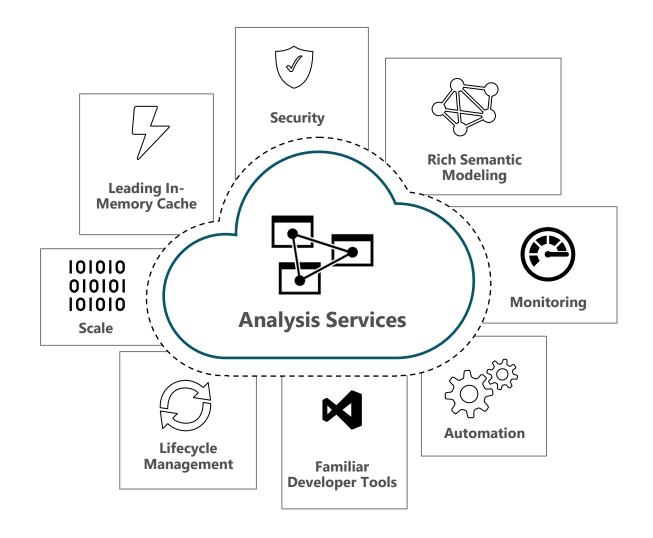
Microsoft Fabric The unified data platform for the era of AI

One Copy for all computes Real separation of compute and storage

All the compute engines store their data automatically in OneLake

The data is stored in a single common format

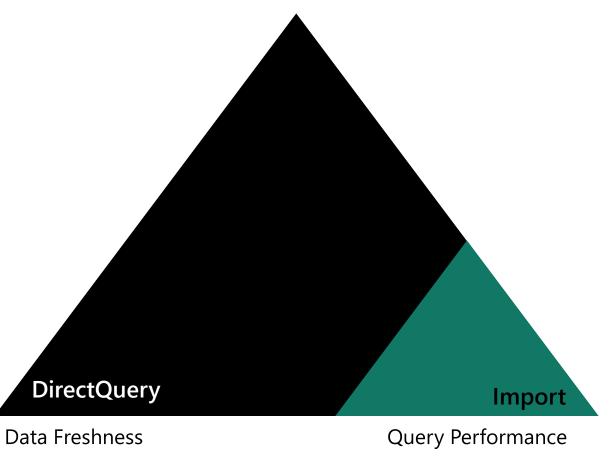
Delta – Parquet, an open standards format, is the storage format for all tabular data in Fabric


Once data is stored in the lake, it is directly accessible by all the engines without needing any import/export

All the compute engines have been fully optimized to work with Delta Parquet as their native format

Analysis Services Engine

Battle tested Analytics Engine Technology


- Enterprise grade analytics
 engine as a service
- Excellent query performance over massive data volumes
- Rich semantic modeling
- Interactive Exploration over even TRILLIONS of rows of data, by intelligent proactive caching of aggregates

Storage Modes

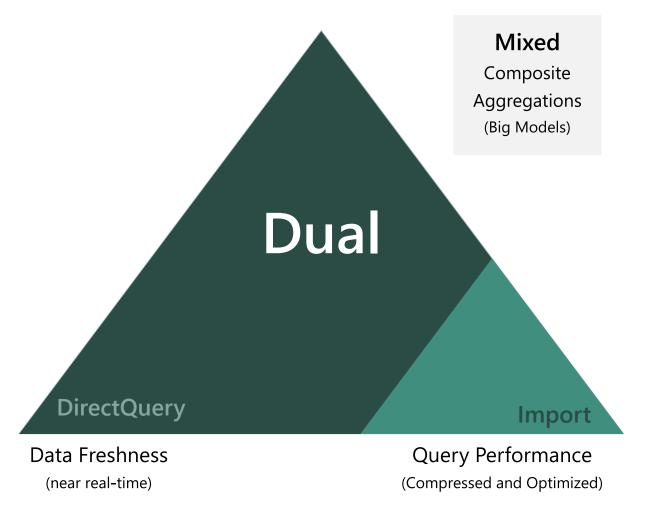
Import: Caches data into memory to deliver extremely fast performance using the **analysis services** database engine. The default mode when creating a new Power BI Desktop solution along with providing Data Modelers the most design flexibility.

DirectQuery: Does not import the data into memory, consists only of the metadata defining the structure. When the model is queried, native queries are used to retrieve data from the underlying data source.

Changing the **Storage mode** of a table to **Import** is an irreversible operation. Once set, this property can't later be changed using Power BI Desktop.

(near real-time)

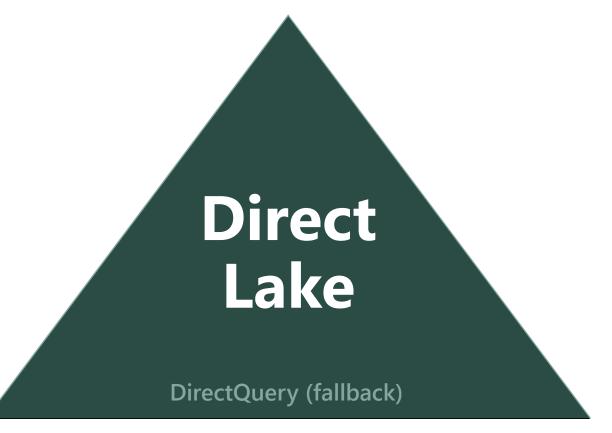
(Compressed and Optimized)


Storage Modes

Import: Caches data into memory to deliver extremely fast performance using the **analysis services** database engine. The default mode when creating a new Power BI Desktop solution along with providing Data Modelers the most design flexibility.

DirectQuery: Does not import the data into memory, consists only of the metadata defining the structure. When the model is queried, native queries are used to retrieve data from the underlying data source.

Dual: Can act as either cached or not cached, depending on the context of the query that's submitted to the Power BI dataset. In some cases, you fulfill queries from cached data. In other cases, you fulfill queries by executing an ondemand query to the underlying data source.


Changing the **Storage mode** of a table to **Import** is an irreversible operation. Once set, this property can't later be changed to either **DirectQuery** or **Dual** using Power BI Desktop.

Storage Modes

Direct Lake: A groundbreaking new dataset capability for analyzing very large data volumes. Based on loading parquet-formatted files directly from a data lake **without having to query a Lakehouse endpoint**, and **without having to import or duplicate data** into a Power BI dataset. Direct Lake is a fast-path to load the data from the lake straight into the Power BI engine, ready for analysis and yielding performance similar to import mode.

DirectQuery (fallback): Automatically switches modeseither due to current limitations or based on factors such as available memory in the capacity.


Data Freshness & Query Performance

Power BI | Direct Lake Mode

Direct Lake is a fast-path to load the data from the lake straight into the Power BI engine, ready for analysis

Direct Lake is based on loading parquetformatted files directly from a data lake without having to query a Lakehouse endpoint, and without having to import or duplicate data into a Power BI dataset

DirectQuery Mode. Slow, but real time

Why Delta?

Why Delta (Parquet)?

Open Standard for file format

Column oriented, efficient data storage and retrieval

Efficient Data Compression and Encoding

Becoming the Industry Standard

Well suited for pruning (Column, rowgroup)

Thrives on bulk operations

Product	Quantity -	Customer 🔽
Apples	1	Adam
Oranges	3	Sue
Pears	2	George
Apples	1	Eve
Apples	1	Eris

A columnar format...

Great for this SELECT SUM(Quantity) GROUP BY Customer

Product	🖵 Quantity 🚽	Customer 🔽
Apples	1	. Adam
Oranges	3	Sue
Pears	2	George
Apples	1	. Eve
Apples	1	. Eris

A columnar format...

Not so great for this:

UPDATE (Product, Quantity) WHERE Customer='George'

Product	-	Quantity -	Customer 🔽
Apples	(6)	1	Adam
Oranges	(7)	3	Sue
Pears	(5)	2	George
Apples	(6)	1	Eve
Apples	(6)	1	Eris

Product Size = 30 characters (bytes)

..., dictionary encoded, ...

Let Apples = 1 Oranges = 2 Pears = 3

..., dictionary encoded, ...

Let Apples = 1 Oranges = 2 Pears = 3

Product Size = 5x4 bytes = 20 bytes

Product Size = $5x^2$ bits = 10 bits ~ 2 bytes

That's 15x smaller!

..., dictionary encoded, ...

2 bits are enough for 3 values!!! -- BITPACKING

Let

Apples = 1 = 0b01

Oranges = 2 = 0b10

Pears = 3 = 0b11

Product	🝷 Quantity 🚽 Customer 💌
Apples	1 Adam
Oranges	3 Sue
Pears	2 George
Apples	1 Eve
Apples	1 Eris

..., with RLE compression

RLE - Run-length encoding

(replace repeated occurrences with the count)

Introducing V-Ordering

Write time optimization to parquet files

Sorting, row group distribution, dictionary encoding, and compression (Shuffling)

Complies to the open standard

Z-Order, compaction, vacuum, time travel, etc. are compatible with V-Order

V-ordering in action

Microsoft Internal DB (162 tables)

x3.2 Reduced IO for workloads

V-ordering in our demo case

📜 CSV Prope	erties X				
General Sha	aring Security Previous Versions Customise				
	CSV				
Туре:	File folder				
Location:	C:\OneDrive\OneDrive - dataMinds vzw\Documents\F				
Size:	32.1 GB (34,544,780,233 bytes)				
Size on disk:	32.1 GB (34,545,246,208 bytes)				
Contains:	242 Files, 7 Folders				

			D	T 1 1D 10 10		E
	TABLE_NAME	SCHEMA_NAME	Rows	TotalReservedSpaceMB	UsedDataSpaceMB	FreeUnusedSpaceMB
1	Trips_FA	Analytical	181940575	6413	6412	0
2	Time_DI	Analytical	86400	15	15	15
3	Bike_DI	Analytical	35553	1	1	1
4	Date_DI	Analytical	7304	19	19	19
5	Date_DI	Analytical	7304	0	0	0
6	Station_DI	Analytical	3430	0	0	0
7	Gender_DI	Analytical	59	0	0	0
8	Region_DI	Analytical	8	0	0	0
9	RideType_DI	Analytical	4	0	0	0
10	UserType_DI	Analytical	3	0	0	0
11	TripType_DI	Analytical	3	0	0	0
12	MemberType_DI	Analytical	3	0	0	0
13	FileType_DI	Analytical	3	0	0	0 Name

Copy data details

6/5/2023 4:00:58 PM

Copy_mns

Source Destination <u>....</u> Lakehouse SQI Azure SQL Database Data read: 🕕 24.016 GB Data written: 🕕 5.909 GB Files written: (1) 181,940,575 Rows read: 1 Rows written: (i) 181,940,575 Succeeded Status Start time 6/5/2023, 3:22:03 PM Pipeline run activity ID 09aa4ccc-d8ae-4e70-aec7-c76a020ddd3c 10.321 MB/s Throughput Total duration 00:38:53 ✓ Duration breakdown Start time 6/5/2023, 3:22:04 PM Optimized throughput Standard Used parallel copies $^{()}$ 1 Queue Transfer Reading from... Writing to sink Date modified Туре Size 6/5/2023 4:00:58 PM PARQUET 5.50 GB

Folder

1 items

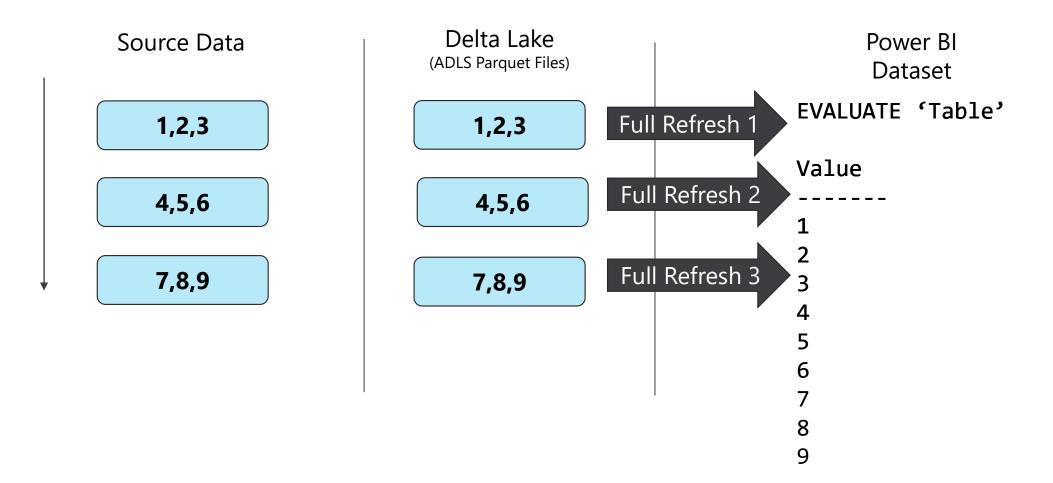
What is Direct Lake Mode?

DirectLake Mode

- \cdot On start, no data is loaded in-memory
- · Column data is *transcoded* from Parquet files when queried
- \cdot Tables can have mix of <u>transcoded</u> (resident) and non-resident
- · Column data can get evicted over time
- \cdot DirectLake fallback as an alternative
- \cdot "Framing" of dataset determines what gets loaded from DeltaLake

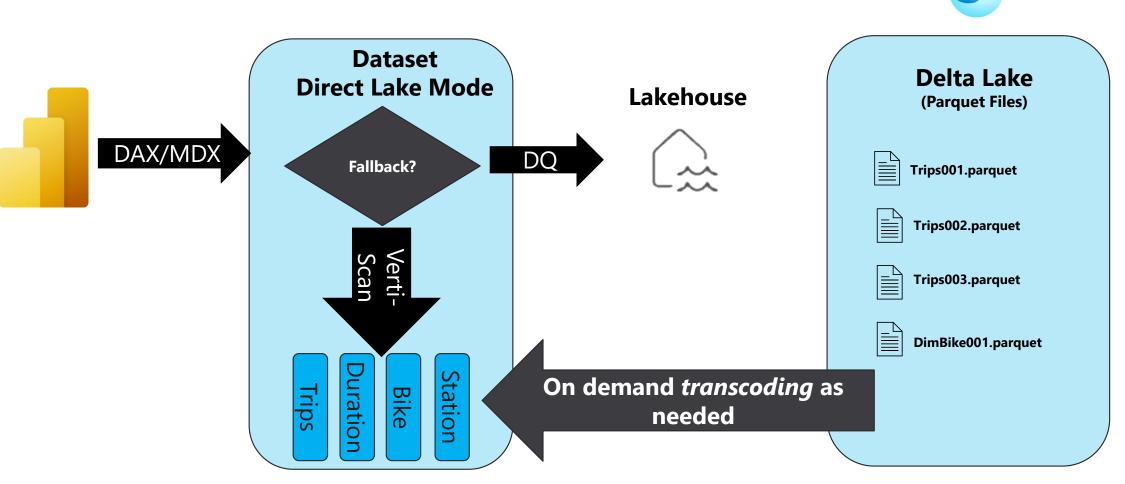
STOP! Demo time!

Using Direct Lake mode over a Lakehouse


STOP! Demo time!

Let's look at Framing

Framing


- \cdot What is framing
 - $\cdot\;$ "point in time" way of tracking what data can be queried by DirectLake
- \cdot Framing is near instant and acts like a cursor
 - · Determines the set of .parquet files to use/ignore for *transcoding* operations
- \cdot Why is this important
 - $\cdot\,$ Delta-lake data is transient for many reasons
- \cdot Typical ETL Process
 - · Ingest data to delta lake tables
 - · Transform as needed using preferred tool
 - \cdot When ready, perform *Framing* operation on dataset

Framing

Fallback to DirectQuery

DQ Fallback

Guardrails

Fabric/Power BI SKUs	<u>Parquet</u> files per table	Row groups per table	Rows per table (millions)	Max model size on disk/OneLake1 (GB)	Max memory (GB)
F2	1000	1000	300	10	3
F4	1000	1000	300	10	3
F8	1000	1000	300	10	3
F16	1000	1000	300	20	5
F32	1000	1000	300	40	10
F64/FT1/P1	5000	5000	1500	Unlimited	25
F128/P2	5000	5000	3000	Unlimited	50
F256/P3	5000	5000	6000	Unlimited	100
F512/P4	10000	10000	12000	Unlimited	200
F1024/P5	10000	10000	24000	Unlimited	400
F2048	10000	10000	24000	Unlimited	400

https://learn.microsoft.com/en-us/power-bi/enterprise/directlake-overview#fallback

Limitations

- · DateTime relationships
- \cdot Calculated Columns and Calculated Tables
- · Complex delta table column types (i.e. Binary and GUID)
 - \cdot Some other
- \cdot T-SQL Based views will always fallback to DQ mode
- \cdot Composite models are not yet supported

Identifying Fallback

- · You can tell when Fallback happens if ..
 - $\cdot\,$ It's slower than usual $\textcircled{\sc {\odot}}$
 - Using the Performance Analyzer, you see a "DirectQuery" category
 - · Performing a trace, you see DirectQueryBegin and DirectQueryEnd events
 - \cdot Depending on the behaviour, you get an error

Controlling Fallback Behaviour

- \cdot The FallbackBehaviour is set to 'Automatic' by default
- Alternative options are:
 - · DirectLake only
 - DirectQuery only
- \cdot Be careful when making changes to this ..

Couldn't load the data for this visual

We cannot process the request because the table 'vw_Records' either does not exist or requires fallback to DirectQuery mode. Fallback to DirectQuery mode is disabled in this semantic model. Consider enabling fallback to DirectQuery mode and try again. See https://go.microsoft.com/fwlink/? linkid=2248855 to learn more.

Close

 \times

STOP! Demo time!

Let's look at Fallback

External Tools

External Tools

- \cdot For now, Web Based Modelling is the recommended way
- · But .. You can use External Tools!
- \cdot Be sure to enable the tenant and workspace setting to allow
- <u>https://blog.tabulareditor.com/2024/01/29/new-access-your-tabular-editor-authored-model-in-the-fabric-ui/</u>

Data **model** settings

△ Users can edit data models in the Power BI service (preview) Enabled for the entire organization

Turn on this setting to allow users to edit data **model**s in the service. This setting doesn't apply to DirectLake semantic **model**s or editing a semantic **model** through an API or XMLA endpoint. Learn More

Apply to:

Specific security groups

Except specific security groups

Apply

Cancel

Workspace settings

(i) About	Organization apps	
	Secure update	
Premium	Allow contributors to update the app for this workspace	
	Allow contributors to update the app	
□ System storage	Template apps	
•	Template apps	
Git integration	Template apps are developed for sharing outside your organization. A template app workspace will	
🚱 OneLake	be created for developing and releasing the app. <u>Learn more about template apps</u>	
0	Develop template apps	
Workspace identity	Data model settings	
ি Network security	Data model settings	
€ Other	Allow workspace members to edit data models in the service. Edits are permanent and automatically saved in this feature preview, and version history isn't saved. This setting doesn't apply to Direct Lake datasets or editing a dataset through an API or XMLA endpoint. <u>Learn more</u>	
Power BI	∧ ✓ Users can edit data models in the Power BI service (preview)	
i General	Service (preview)	
€ Data connections		
> Embed codes		
Data Engineering/Science	\sim	

Optimizing Delta for Direct Lake mode

Optimizing Delta for Direct Lake mode

- V-Order makes a big difference, as it's tailored for Verti-Scan
- Direct Lake will work over Shortcuts to external data
 - Expect a performance impact, because reasons ..
- Direct Lake thrives on fewer, larger .parquet files
 - Physical structure will always be crucial
 - OPTIMIZE (bin-compaction) and VACUUM in the Data Engineering process will be key
 - Especially with streaming/small batch architectures, keep this in mind
- Principle of lean models will still apply
 - Only include what's needed for the reports and datasets

Warming the cache

Common Answers to Common Questions

"Greatest Hits"

- Delta doesn't like spaces in object names 🙂
- Delta Tables are a hard requirement for Direct Lake mode
 - Dataflows Gen2, Pipelines, Notebooks can create them for you in the lakehouse
- Web modelling is the recommended way to create DirectLake datasets
- XMLA Read/Write is supported, but disables web modelling (default)
- Direct Lake doesn't have unique DAX limitations
 - DQ does ..
- No confirmed plans right now to support Apache Iceberg, HUDI, ..
- YES, you can have Copilot! (Now stop asking me)

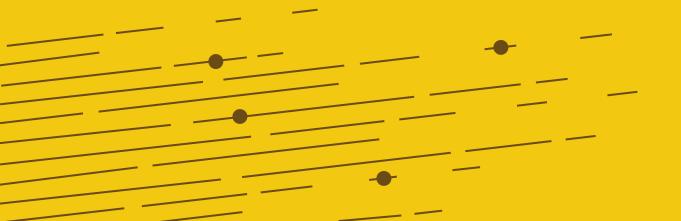
What does this mean for my data modelling?

STREET

Data should be transformed as far upstream as possible, and as far downstream as necessary.

Matthew Roche, 2021 (The purple haired sword afficionado) https://ssbipolar.com/2021/05/31/roches-maxim

Resources


- <u>https://learn.microsoft.com/en-us/power-bi/enterprise/directlake-overview</u>
- <u>https://learn.microsoft.com/en-us/power-bi/enterprise/directlake-analyze-qp</u>
- <u>https://learn.microsoft.com/en-us/fabric/data-engineering/lakehouse-pbi-reporting</u>
- <u>https://learn.microsoft.com/en-us/fabric/data-engineering/delta-optimization-and-v-order?tabs=sparksql</u>
- <u>https://fabric.guru/power-bi-direct-lake-mode-frequently-asked-questions</u>
- <u>https://www.fourmoo.com/2023/05/24/using-power-bi-directlake-in-microsoft-fabric/</u>
- <u>https://fabric.guru/controlling-direct-lake-fallback-behavior</u>
- <u>https://milescole.dev/optimization/2023/10/08/Delta-Table-Maintenance-101.html</u>
- <u>https://aka.ms/delta</u>

Slides

https://github.com/BenniDeJagere/Presentations/{Year}/{YYYYMMDD}_{Event}

Thank you