

Simplify DAX with Window Functions

Greg Strzymiński

A big thank you to our amazing partners

Greg Strzymiński

KEARNEY

BI Team Lead

@GregWorksPowerBl

/greg-strzyminski

/greg-strzyminski

After this session you will:

- Understand the concept and syntax of window functions.
- Be familiar with a number of common use-cases for window functions.
- Be equipped with the technical knowledge needed to implement the window functions in your own reports literally the next day.

Window functions in a nutshell

Let's see a 1-slide summary of window functions in DAX

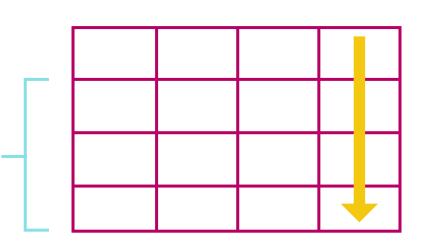
Window functions return a row or a set of rows from a sorted table.



We need 3 elements to make window functions work:

Table

First, we need a table to make the window functions work. The table can be a one from the model, virtual, calculated etc. SUMMARIZE() and ALL() family functions come in handy here.



We need to know how to sort the table to make the row selection logical. The sorting can be defined by one or more columns existing in the table or measures that aren't part of the table.

Row(s) to return

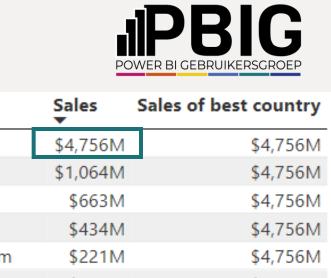
Last, we must define which row(s) are to be selected. We can use absolute (e.g. first, second, last row) or relative (row after/before the current one) positions depending on the window function.

Common scenarios to leverage window functions in DAX

Index

Use case 1: We want to calculate sales of the best country

We are iterating any of these rows


Country Sales	
United States \$4,756M	
China \$1,064M	
Germany \$663M	
France \$434M	
United Kingdom \$221M	
Canada \$176M	
Japan \$163M	
Australia \$79M	
India \$78M	
Russia \$71M	
Italy \$56M	
Iran \$52M	
Turkmenistan \$52M	
Syria \$45M	
Pakistan \$44M	
South Korea \$37M	
Thailand \$36M	

JIPBIG

POWER BI GEBRUIKERSGROEF

Index

Use case 1: We want to calculate sales of the best country

We are iterating	
any of these rows	

Country

United States

United States	<u> </u> ,7 30101	\$ 4 ,730101
China	\$1,064M	\$4,756M
Germany	\$663M	\$4,756M
France	\$434M	\$4,756M
United Kingdom	\$221M	\$4,756M
Canada	\$176M	\$4,756M
Japan	\$163M	\$4,756M
Australia	\$79M	\$4,756M
India	\$78M	\$4,756M
Russia	\$71M	\$4,756M
Italy	\$56M	\$4,756M
Iran	\$52M	\$4,756M
Turkmenistan	\$52M	\$4,756M
Syria	\$45M	\$4,756M
Pakistan	\$44M	\$4,756M
South Korea	\$37M	\$4,756M
Thailand	\$36M	\$4,756M

Index

Use case 1: We want to calculate sales of the best country

Use case 2: We want to calculate sales of the worst country

Use case 3: We want to calculate sales of the 3rd best country We are iterating

any of these rows

Country Sales United States \$4,756M China \$1,064M \$663M Germany \$434M France United Kingdom \$221M Canada \$176M Japan \$163M Australia \$79M India \$78M Russia \$71M Italy \$56M \$52M Iran Turkmenistan \$52M Syria \$45M Pakistan \$44M South Korea \$37M Thailand \$36M PRIG

POWER BI GEBRUIKERSGROB

Index

Use case 4: We want to calculate sales of the country with the highest share of returns

Country	Sales	Share of returns	Sales of country with mo	st returns
United States	\$4,756M	260%		\$56M
China	\$1,064M	241%		\$56M
Germany	\$663M	291%		\$56M
France	\$434M	294%		\$56M
United Kingdom	\$221M	301%		\$56M
Canada	\$176M	272%		\$56M
Japan	\$163M	244%		\$56M
Australia	\$79M	236%		\$56M
India	\$78M	246%		\$56M
Russia	\$71M	302%		\$56M
Italy	\$56M	329%		\$56M
Iran	\$52M	259%		\$56M
Turkmenistan	\$52M	251%		\$56M
Syria	\$45M	219%		\$56M
Pakistan	\$44M	249%		\$56M
South Korea	\$37M	222%		\$56M
Thailand	\$36M	242%		\$56M
Bhutan	\$30M	206%		\$56M
Taiwan	\$26M	249%		\$56M
Armenia	\$26M	263%		\$56M

JIPBIG

POWER BI GEBRUIKERSGROEF

Use case 5: We want to calculate sales of the previous country relative to the current row

Offset

We are iterating this row

Country	Sales	
United States	\$4,756M	
China	\$1,064M	
Germany	\$663M	
France	\$434M	
United Kingdom	\$221M	
Canada	\$176M	We want this
Japan	\$163M	value
Australia	\$79M	
India	\$78M	
Russia	\$71M	
Italy	\$56M	
Iran	\$52M	
Turkmenistan	\$52M	
Syria	\$45M	
Pakistan	\$44M	
South Korea	\$37M	
Thailand	\$36M	

IPBIG

POWER BI GEBRUIKERSGROEP

Offset

Use case 5: We want to calculate sales of the previous country relative to the current row

	Country	Sales ▼	Sales of previous country
	United States	\$4,756M	
	China	\$1,064M	\$4,756M
	Germany	\$663M	\$1,064M
	France	\$434M	\$663M
	United Kingdom	\$221M	\$434M
	Canada	\$176M	\$221M
We are iterating	Japan	\$163M	\$176M
this row	Australia	\$79M	\$163M
	India	\$78M	\$79M
	Russia	\$71M	\$78M
	Italy	\$56M	\$71M
	Iran	\$52M	\$56M
	Turkmenistan	\$52M	\$52M
	Syria	\$45M	\$52M
	Pakistan	\$44M	\$45M
	South Korea	\$37M	\$44M
	Thailand	\$36M	\$37M

IPBIG

POWER BI GEBRUIKERSGROEP

Offset

Use case 6: We want to calculate sales of the previous country relative to the current row

Use case 7: We want to calculate sales of the next country relative to the current row

Use case 8: We want to calculate sales of the country that's 3 places before the current row

	Country	Sales
	United States	\$4,756M
	China	\$1,064M
	Germany	\$663M
We are iterating	France	\$434M
	United Kingdom	\$221M
	Canada	\$176M
	Japan	\$163M
this row	Australia	\$79M
	India	\$78M
	Russia	\$71M
	Italy	\$56M
	Iran	\$52M
	Turkmenistan	\$52M
	Syria	\$45M
	Pakistan	\$44M
	South Korea	\$37M
	Thailand	\$36M

Window

Use case 7: We want to calculate sales of all countries that are before the current row or are the current row

We are iterating

this row

	Country	Sales
	United States	\$4,756M
	China	\$1,064M
	Germany	\$663M
	France	\$434M
	United Kingdom	\$221M
	Canada	\$176M
	Japan	\$163M
	Australia	\$79M
М	India	\$78M
	Russia	\$71M
	Italy	\$56M
	Iran	\$52M
	Turkmenistan	\$52M
	Syria	\$45M
	Pakistan	\$44M
	South Karaa	\$37M
	South Korea	φ <i>31</i> 1VI

We want these values

Window

Use case 7: We want to calculate sales of all countries that are before the current row or are the current row

	Country	Sales	Sales cumulative by country
	United States	\$4,756M	\$4,756M
	China	\$1,064M	\$5,820M
	Germany	\$663M	\$6,483M
	France	\$434M	\$6,917M
	United Kingdom	\$221M	\$7,138M
	Canada	\$176M	\$7,314M
We are iterating	Japan	\$163M	\$7,477M
this row	Australia	\$79M	\$7,556M
	India	\$78M	\$7,634M
	Russia	\$71M	\$7,705M
	Italy	\$56M	\$7,760M
	Iran	\$52M	\$7,813M
	Turkmenistan	\$52M	\$7,864M
	Syria	\$45M	\$7,910M
	Pakistan	\$44M	\$7,954M
	South Korea	\$37M	\$7,991M
	Thailand	\$36M	\$8,028M

IPBIG

POWER BI GEBRUIKERSGROEP

The 3 window functions

, i			

Get a row from a table using its **absolute position**.

Use-cases:

Index

- KPI value of best item
- KPI value of 2nd best item
- KPI value of worst item
- Newest KPI value
- Oldest KPI value
- Previous KPI value

Offset

Get a row from a table that is **relative** to the **current row**.

Use-cases:

- KPI value of previous item relative to the current item
- KPI value of next item relative to the current item
- KPI value of 3rd next item relative to the current item

Window

Get a **set of rows** from a table that are **relative** to the **current row** or using their **absolute** position.

Use-cases:

KPI value of all

previous items relative

- to the current item
- Cumulative calculations
- Pareto charts
- Rolling averages

How do I even read this?

Window

Use case 7: We want to calculate sales of all countries that are before the current row or are the current row

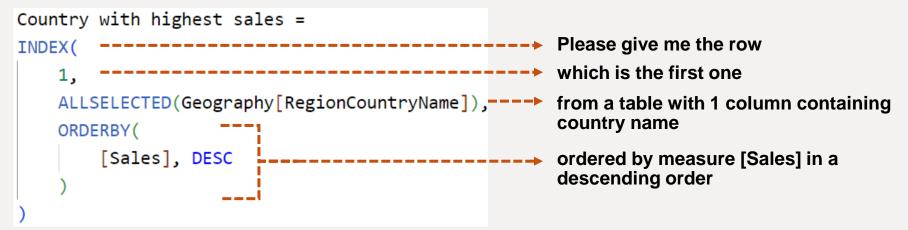
Sales cumulative by country =
CALCULATE(
 [Sales],
 WINDOW(
 1, ABS,
 0, REL,
 ALLSELECTED(Geography[RegionCountryName]),
 ORDERBY(
 [Sales], DESC
)
)
)

We are iterating

this row

Choose rows to return in absolute or relative manner

Country	Sales	
United States	\$4,756M	1
China	\$1,064M	2
Germany	\$663M	3
France	\$434M	
United Kingdom	\$221M	
Canada	\$176M	-3
Japan	\$163M	-2
Australia	\$79M	-1.
India	\$78M	0
Russia	\$71M	+1
Italy	\$56M	+2
Iran	\$52M	+3
Turkmenistan	\$52M	
Syria	\$45M	
Pakistan	\$44M	
South Korea	\$37M	
Thailand	\$36M	
Bhutan	\$30M	-2
Taiwan	\$26M	-1


```
Country with highest sales =
INDEX(
    1,
    ALLSELECTED(Geography[RegionCountryName]),
    ORDERBY(
       [Sales], DESC
    )
)
```

Relative

```
Previous country by sales =
OFFSET(
    -1,
    ALLSELECTED(Geography[RegionCountryName]),
    ORDERBY(
       [Sales], DESC
    )
```

Index

Use case 1: We want to calculate sales of the best country

Country	Sales
United States	\$4,756M
China	\$1,064M
Germany	\$663M
France	\$434M
United Kingdom	\$221M
Canada	\$176M

The above equals:

Return the country which has the highest sales

RIG

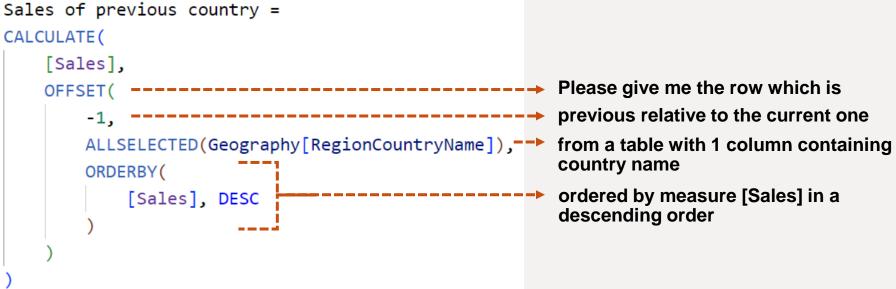
POWER BI GEBRUIKERSGROE

Index

Use case 1: We want to calculate sales of the best country

```
Sales of country with highest sales =
CALCULATE(
   [Sales],
   INDEX(
        1,
        ALLSELECTED(Geography[RegionCountryName]),
        ORDERBY(
        [Sales], DESC
        )
   )
)
```

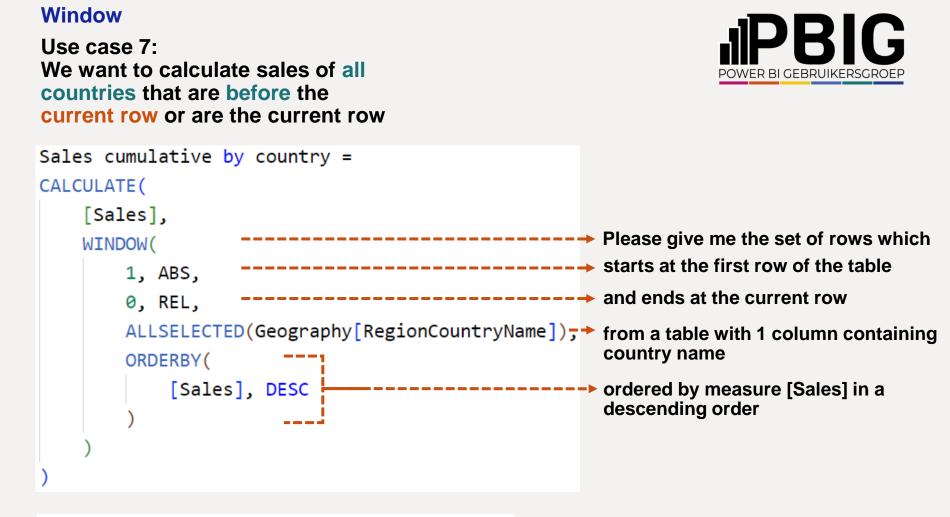
Country	Sales •	Sales of co with highe	-
United States	\$4,756M		\$4,756M
China	\$1,064M		\$4,756M
Germany	\$663M		\$4,756M
France	\$434M		\$4,756M
United Kingdom	\$221M		\$4,756M



Return the sales of the country which has the highest sales

Offset

Use case 5: We want to calculate sales of the previous country relative to the current row


Country	Sales	Sales of previous country
United States	\$4,756M	
China	\$1,064M	\$4,756M
Germany	\$663M	\$1,064M
France	\$434M	\$663M
United Kingdom	\$221M	\$434M
		_

- Please give me the row which is
- previous relative to the current one
- country name
- ordered by measure [Sales] in a descending order

The above equals:

Return the Sales of the country which is previous in terms of Sales to the current one

Country	Sales	Sales cumulative by country
United States	\$4,756M	\$4,756M
China	\$1,064M	\$5,820M
Germany	\$663M	\$6,483M

The above equals:

Return the cumulative Sales of the current country

Window

Use case X: What would this syntax mean? Use case 1: We want to calculate sales of the best country

Mysterious window function 💁 =	Sales of country with highest sales =
CALCULATE (CALCULATE(
[Sales],	[Sales],
WINDOW(INDEX(
1, ABS,	1,
1, ABS,	ALLSELECTED(Geography[RegionCountryName]),
ALLSELECTED(Geography[RegionCountryName]),	ORDERBY (
ORDERBY([Sales], DESC
[Sales], DESC)
)
)

Country	Sales	Sales of country with highest sales	Mysterious window function
United States	\$4,756M	\$4,756M	\$4,756M
China	\$1,064M	\$4,756M	\$4,756M
Germany	\$663M	\$4,756M	\$4,756M
France	\$434M	\$4,756M	\$4,756M
United Kingdom	\$221M	\$4,756M	\$4,756M
Canada	\$176M	\$4,756M	\$4,756M

Let's see some live examples in Power BI

Key takeways

- 1. Window functions enable you to simplify and optimize your DAX code.
- 2. Typical use cases include references to previous/next or first/last item, running averages and cumulative sums.
- 3. Window functions are more optimized than the standard DAX code you would write for the same use-case
- 4. Syntax of window functions is not that overwhelming when you get a grasp of it.

Bonus Fun fact: window functions in DAX are a foundation for the Visual Calculations.

Thank you! Time for Q&A

Subscribe my Youtube channel

@GregWorksPowerBI

A big thank you to our amazing partners

Session Feedback

Event Feedback

