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• GitHub: https://github.com/kevchant



DevOps introduction

• DevOps is practice that that combines Development and 
Operational processes together to improve the development 
lifecycle.
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Terminology used

• CI/CD stands for Continuous Integration/Continuous 
Deployment.

• Git repository is a folder/directory where you store code/files you 
work with. It contains a hidden database in a .Git subfolder.

• Branches allow you to work with files in a new area in Git 
repository. It seems like a copy, but actually it is pointers.

• More covered during the session.



Advantages of DevOps

• Audit trail of changes

• Faster updates

• Reliable and more consistent deployments

• Introduces new industry innovations



Version control

• Version control allows you to track and manage changes to files.

• Reduces conflicts and allows history of changes.

• Essential when looking to perform CI/CD with Fabric items.

• Power BI reports are no exception. However, in past has been 
complex.



Power BI Desktop projects
• Still in preview.

• Stores metadata in various files.

• Allows easy integration with version control.

• Supports two newer file formats:
• Tabular Model Definition Language (TMDL)
• Power BI Enhanced Report Format (PBIR)



TMDL

• New(ish) file format for the semantic model metadata.

• Aim is to replace ‘Model.bim’ file.

• Uses a YAML-like syntax for easier reading.

• Breaks down into each object into a separate file.

• Integrates better with version control.



PBIR

• New(ish) format for report metadata.

• Uses a JSON syntax.

• Breaks down report items into a separate files.

• Integrates better with version control.

• Allows quick external editing in other tools.



Ways to create Power BI Projects

• Within Power BI Desktop

• When creating in a workspace with Git integration 
configured.

• Demo



Microsoft Fabric Git integration
• Version control for Fabric items.

• Allows supported items in a workspace to have metadata synchronized 
with a Git repository.
• To be more precise a workspace synchronizes with a branch.

• Supports cloud-based versions of Azure DevOps and GitHub.

• Requires Fabric or Power BI Premium capacity.

• Items supported at various levels.



Currently supported items

• Data pipelines (preview)
• Dataflows gen2 (preview)
• Eventhouse and KQL database 

(preview)
• EventStream (preview)
• Lakehouse (preview)
• Mirrored database (preview)
• Notebooks
• Paginated reports (preview)
• Reflex (preview)
• Warehouses (preview)

• Reports (except reports connected 
to semantic models hosted in Azure 
Analysis Services, SQL Server 
Analysis Services, or reports 
exported by Power BI Desktop that 
depend on semantic models hosted 
in MyWorkspace) (preview)

• Semantic models (except push 
datasets, live connections to 
Analysis Services, model v1) 
(preview)

• Spark Job Definitions (preview)
• Spark environment (preview)
• SQL database (preview)



Git integration features

• Can change items in workspace and commit to repository.

• Can also update from repository.

• Can branch out to new workspace to create “feature” workspaces.



Feature workspaces

• Workspace that represents a specific feature.

• Can be achieved with “branch out to new workspace” 
functionality.

• However, this functionality requires permissions to create 
workspaces.

• Alternative is to create separate workspace for each developer. 



How it aligns with recommended 
development process for Fabric
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For true CI I recommend introducing 
unit tests
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Happy paths to test semantic models



Git integration demos

• Microsoft Fabric Git integration.

• Continuous integration tests.

• BPA bulk



Recommended release options

• Microsoft released article last September.

• Includes previously shown recommended development process 
(CI) and release options (CD)

• I provide additional guidance and advice in context of Power BI.



Option 1 – Git-based deployments

• Have workspaces connected to different branches in the same Git 
repository.

• Update different workspaces via pull requests.

• Can be done with Fabric Git APIs supplemented by other APIs.

• Ideal for scenarios that require only minor source changes.

• Requires Git knowledge.



Option 1 diagram

Items changed 
in feature 

workspace 
owned by user

Feature branch in 
Azure DevOps

Main or dev 
branch

Production 
workspace 

updated

Power BI Report 
changed in Desktop 
Project saved in Git 
repository on local 

machine

Git Logo by Jason Long is 
licensed under 

the Creative Commons 
Attribution 3.0 Unported

License.

Pull request 
raised

https://twitter.com/jasonlong
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


Option 2 – Git-based deployments 
using build pipeline
• Deploy to different workspaces through a suitable pipeline deployment 

service (Azure Pipelines, GitHub Actions). Typically with APIs.

• Recommendation is that workflow for each stage contains:
• Build for unit tests
• Release to perform update

• Ideal for more complex scenarios and when you implement DataOps.

• Knowledge of ALM service required (Azure DevOps, GitHub)



Current Git-based deployment 
methods
• Direct REST API calls.

• PowerShell modules.

• Fabric-cicd Python library



Option 2 diagram
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Advice for option 2 pipelines

• Consider YAML pipelines for portability.

• Avoid hard-coding sensitive values. Either use the ALM offerings 
secrets store (variable groups, secrets) or Azure Key Vault.

• Strive to implement approvals process for production workloads.



Option 3 – Microsoft Fabric 
deployment pipelines
• Use development process to update a workspace that represents 

development environment/stage.

• From there, orchestrate with Microsoft Fabric deployment 
pipelines.



Option 3 with deployment pipelines
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Deployment pipelines orchestrated 
by Azure Pipelines
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Option 4 – For multiple 
clients/solutions/tenants
• Similar to option 2.

• All development and test done in same tenant.

• Then deployed to workspaces in other tenants via pipelines.

• Aimed mostly at ISV’s. However, useful for custom reports as well.



Demos

• Option 2 - Fabric-cicd

• Option 3 - Deployment pipelines.



To summarize

• Applying DevOps processes can  lead to fast and reliable 
deployments.

• Testing is essential, ideally at a very early stage.

• Recommend adopting Power BI Desktop projects.

• Experiment to see what release option suits your needs.





Thank you

• Twitter/Blue Sky: @kevchant
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