
Applying DevOps practices
to your Power BI

deployments in Microsoft
Fabric

Kevin Chant

Agenda
• Bio

• DevOps introduction

• Power BI Desktop projects

• Microsoft Fabric Git integration

• Suggested release/deployment options

Kevin Chant

• Lead Technology Advocate in the Netherlands
• Worked in IT since the days of Windows 95
• Experience in various sectors
• Various certifications, Data Platform MVP

• Twitter/Blue Sky: @kevchant
• LI: https://www.linkedin.com/in/kevin-chant/
• Blog: https://www.KevinRChant.com
• GitHub: https://github.com/kevchant

DevOps introduction

• DevOps is practice that that combines Development and
Operational processes together to improve the development
lifecycle.

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://elcodigok.blogspot.com/2019/09/que-es-devops.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

Terminology used

• CI/CD stands for Continuous Integration/Continuous
Deployment.

• Git repository is a folder/directory where you store code/files you
work with. It contains a hidden database in a .Git subfolder.

• Branches allow you to work with files in a new area in Git
repository. It seems like a copy, but actually it is pointers.

• More covered during the session.

Advantages of DevOps

• Audit trail of changes

• Faster updates

• Reliable and more consistent deployments

• Introduces new industry innovations

Version control

• Version control allows you to track and manage changes to files.

• Reduces conflicts and allows history of changes.

• Essential when looking to perform CI/CD with Fabric items.

• Power BI reports are no exception. However, in past has been
complex.

Power BI Desktop projects
• Still in preview.

• Stores metadata in various files.

• Allows easy integration with version control.

• Supports two newer file formats:
• Tabular Model Definition Language (TMDL)
• Power BI Enhanced Report Format (PBIR)

TMDL

• New(ish) file format for the semantic model metadata.

• Aim is to replace ‘Model.bim’ file.

• Uses a YAML-like syntax for easier reading.

• Breaks down into each object into a separate file.

• Integrates better with version control.

PBIR

• New(ish) format for report metadata.

• Uses a JSON syntax.

• Breaks down report items into a separate files.

• Integrates better with version control.

• Allows quick external editing in other tools.

Ways to create Power BI Projects

• Within Power BI Desktop

• When creating in a workspace with Git integration
configured.

• Demo

Microsoft Fabric Git integration
• Version control for Fabric items.

• Allows supported items in a workspace to have metadata synchronized
with a Git repository.
• To be more precise a workspace synchronizes with a branch.

• Supports cloud-based versions of Azure DevOps and GitHub.

• Requires Fabric or Power BI Premium capacity.

• Items supported at various levels.

Currently supported items

• Data pipelines (preview)
• Dataflows gen2 (preview)
• Eventhouse and KQL database

(preview)
• EventStream (preview)
• Lakehouse (preview)
• Mirrored database (preview)
• Notebooks
• Paginated reports (preview)
• Reflex (preview)
• Warehouses (preview)

• Reports (except reports connected
to semantic models hosted in Azure
Analysis Services, SQL Server
Analysis Services, or reports
exported by Power BI Desktop that
depend on semantic models hosted
in MyWorkspace) (preview)

• Semantic models (except push
datasets, live connections to
Analysis Services, model v1)
(preview)

• Spark Job Definitions (preview)
• Spark environment (preview)
• SQL database (preview)

Git integration features

• Can change items in workspace and commit to repository.

• Can also update from repository.

• Can branch out to new workspace to create “feature” workspaces.

Feature workspaces

• Workspace that represents a specific feature.

• Can be achieved with “branch out to new workspace”
functionality.

• However, this functionality requires permissions to create
workspaces.

• Alternative is to create separate workspace for each developer.

How it aligns with recommended
development process for Fabric

Power BI
Report

changed in
feature

workspace

Feature branch in
Azure DevOps

Main or dev
branch

Power BI Report changed
in Desktop Project saved
in Git repository on local

machine

Git Logo by Jason Long is
licensed under

the Creative Commons
Attribution 3.0 Unported

License.

https://twitter.com/jasonlong
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

For true CI I recommend introducing
unit tests

Power BI report
changed in feature

workspace

Feature branch in
Azure DevOps

Power BI Report
changed in

Desktop Project
saved in Git

repository on local
machine

Pull request
raised

Azure Pipeline
runs. Performing

CI tests using
Tabular Editor

and PBI Inspector

CI checks passed

Main or dev
branch

updated

Happy paths to test semantic models

Git integration demos

• Microsoft Fabric Git integration.

• Continuous integration tests.

• BPA bulk

Recommended release options

• Microsoft released article last September.

• Includes previously shown recommended development process
(CI) and release options (CD)

• I provide additional guidance and advice in context of Power BI.

Option 1 – Git-based deployments

• Have workspaces connected to different branches in the same Git
repository.

• Update different workspaces via pull requests.

• Can be done with Fabric Git APIs supplemented by other APIs.

• Ideal for scenarios that require only minor source changes.

• Requires Git knowledge.

Option 1 diagram

Items changed
in feature

workspace
owned by user

Feature branch in
Azure DevOps

Main or dev
branch

Production
workspace

updated

Power BI Report
changed in Desktop
Project saved in Git
repository on local

machine

Git Logo by Jason Long is
licensed under

the Creative Commons
Attribution 3.0 Unported

License.

Pull request
raised

https://twitter.com/jasonlong
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Option 2 – Git-based deployments
using build pipeline
• Deploy to different workspaces through a suitable pipeline deployment

service (Azure Pipelines, GitHub Actions). Typically with APIs.

• Recommendation is that workflow for each stage contains:
• Build for unit tests
• Release to perform update

• Ideal for more complex scenarios and when you implement DataOps.

• Knowledge of ALM service required (Azure DevOps, GitHub)

Current Git-based deployment
methods
• Direct REST API calls.

• PowerShell modules.

• Fabric-cicd Python library

Option 2 diagram

Items
changed in

feature
workspace

Feature branch in
Azure DevOps

Main branch Azure DevOps
pipeline runs

Pull request
raised

Production
workspace

updated

Git Logo by Jason Long is
licensed under

the Creative Commons
Attribution 3.0 Unported

License.

Power BI Report
changed in Desktop
Project saved in Git
repository on local

machine

https://twitter.com/jasonlong
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Advice for option 2 pipelines

• Consider YAML pipelines for portability.

• Avoid hard-coding sensitive values. Either use the ALM offerings
secrets store (variable groups, secrets) or Azure Key Vault.

• Strive to implement approvals process for production workloads.

Option 3 – Microsoft Fabric
deployment pipelines
• Use development process to update a workspace that represents

development environment/stage.

• From there, orchestrate with Microsoft Fabric deployment
pipelines.

Option 3 with deployment pipelines

Supported
items changed

in Feature
workspace

Feature branch
changes merged

with
Development
branch in Git

repository

Supported
items

changed in
Development

workspace
that is part of
deployment

pipeline

Deploy done
via deployment

pipeline

Supported items
changed in Test

workspace

Supported
items changed
in Production

workspace

Pull request
raised

between Git
branches

Deploy done
via

deployment
pipeline

Performed via Git integration and Azure DevOps Performed via Fabric Deployment pipelines

Git Logo by Jason Long is
licensed under

the Creative Commons
Attribution 3.0 Unported

License.

https://twitter.com/jasonlong
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Deployment pipelines orchestrated
by Azure Pipelines

Feature branch
changes merged

with
Development
branch in Git

repository

Supported
items

changed in
Development

workspace
that is part of
deployment

pipeline

Deploy done
via Azure
pipeline

Supported items
changed in Test

workspace

Supported
items changed
in Production

workspace

Pull request
raised

between Git
branches

After approval
deployment done
via Azure pipeline

Performed via Git integration and GitHub Orchestrated by Azure Pipelines

Supported
items changed

in Feature
workspace

Git Logo by Jason Long is
licensed under

the Creative Commons
Attribution 3.0 Unported

License.

https://twitter.com/jasonlong
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Option 4 – For multiple
clients/solutions/tenants
• Similar to option 2.

• All development and test done in same tenant.

• Then deployed to workspaces in other tenants via pipelines.

• Aimed mostly at ISV’s. However, useful for custom reports as well.

Demos

• Option 2 - Fabric-cicd

• Option 3 - Deployment pipelines.

To summarize

• Applying DevOps processes can lead to fast and reliable
deployments.

• Testing is essential, ideally at a very early stage.

• Recommend adopting Power BI Desktop projects.

• Experiment to see what release option suits your needs.

Thank you

• Twitter/Blue Sky: @kevchant

• LI: https://www.linkedin.com/in/kevin-chant/

• Blog: https://www.KevinRChant.com

• GitHub: https://github.com/kevchant

https://www.linkedin.com/in/kevin-chant/
https://www.kevinrchant.com/
https://github.com/kevchant

	Titeldia's
	Slide 1: Applying DevOps practices to your Power BI deployments in Microsoft Fabric

	partnerslide
	Slide 2

	Content
	Slide 3: Agenda
	Slide 4: Kevin Chant

	Power BI Desktop Projects
	Slide 5: DevOps introduction
	Slide 6: Terminology used
	Slide 7: Advantages of DevOps
	Slide 8: Version control

	Power BI Projects
	Slide 9: Power BI Desktop projects
	Slide 10: TMDL
	Slide 11: PBIR
	Slide 12: Ways to create Power BI Projects

	Microsoft Fabric Git integration
	Slide 13: Microsoft Fabric Git integration
	Slide 14: Currently supported items
	Slide 15: Git integration features
	Slide 16: Feature workspaces
	Slide 17: How it aligns with recommended development process for Fabric
	Slide 18: For true CI I recommend introducing unit tests
	Slide 19: Happy paths to test semantic models
	Slide 20: Git integration demos

	Suggested CI/CD release options
	Slide 21: Recommended release options
	Slide 22: Option 1 – Git-based deployments
	Slide 23: Option 1 diagram
	Slide 24: Option 2 – Git-based deployments using build pipeline
	Slide 25: Current Git-based deployment methods
	Slide 26: Option 2 diagram
	Slide 27: Advice for option 2 pipelines
	Slide 28: Option 3 – Microsoft Fabric deployment pipelines
	Slide 29: Option 3 with deployment pipelines
	Slide 30: Deployment pipelines orchestrated by Azure Pipelines
	Slide 31: Option 4 – For multiple clients/solutions/tenants
	Slide 32: Demos
	Slide 33: To summarize

	Evaluation QR
	Slide 34
	Slide 35: Thank you

