

Sponsors

• Master of Science in IT Engineering, Master of Science in Economics, MBA

• Professor of BI & Analytics @UniBO & @Bologna Business School

• Visiting Professor @UNIVPM e @UNICATT

• BI & Analytics Consultant

• Lecturer in DAX and Tabular since 2014

• Co-founding member of kubisco (www.kubisco.com)

• Co-founding member of the Power BI User Group Italy

• Current Focus: Composite Models and Visual Context

About me

www.kubisco.com

http://www.kubisco.com/

• Introducing CALCULATE
• Why modifying the Filter Context?
• What modifications can be done to the Filter Context through CALCULATE?
• Filter and Filter Context Definition
• More on Filters
• Filters vs Global Modifiers
• Filter Modifier
• Adding Filters explicitly and overwriting existing ones
• Removing Filters
• Modify the model Relationships Columns
• Modify the model Relationships cross-filter direction
• CALCULATE Global Modifiers
• CALCULATE Algorithm
• CALCULATE Alogrithm re-cap examples

Outline

Foreword
CALCULATE is preceived as a complex function. DAX is perceived as a complex language.

Both are misperceptions.

CALCULATE is a simple and powerful function. DAX is a simple and powerful language.

Point is that simple does not mean easy.

CALCULATE and DAX in general can be used in complex scenarios as they are powerful but
you can also use both in simple scenarios and complexity does not show up

It is what we want to do that MIGHT be complex, not CALCULATE or DAX in general. As
they are both powerful, theyt can ALSO be used in COMPLEX scenarios

Foreword

DAX Pillars are only six (learn them)!

Filter Context
Row Context
Iterators
Context Transition
Expanded Tables
Visual Context

CALCULATE documentation (dax.guide)

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

In short, CALCULATE evaluates a scalar DAX expression in a Filter
Context modified by Filters and/or Modifiers.

CALCULATE works ONLY with the Filter Context. The scalar expression
must, therefore, be meaningful in absence of Row Context

Introducing CALCULATE

https://dax.guide/calculate/

CALCULATE is implicitely called anytime a reference to a measure is done.

[Measure] is executed as CALCULATE ([Measure])

Due to the Context Transition (more on this later) performed by CALCULATE, the
practice of referencing measures omitting the table name has been put in force
([Measure] and not Table[Measure]). In fact, Measures can be placed in any table
without affecting their results. They have nothing to do with any particular table.

Columns, on the contrary, are hardwired to tables, so it makes sense to reference
them as Table[Column]

Introducing CALCULATE

CALCULATE works ONLY with the Filter Context. The scalar expression must,
therefore, be meaningful in absence of Row Context

CALCULATE ([Measure], …) OK

CALCULATE (< Explicit scalar DAX code >, …) OK

CALCULATE (Table[Column], ….) NOT OK (Row Context needed)

CALCULATE (RELATED (Table[Column], …) NOT OK (Row Context needed)

Introducing CALCULATE

CALCULATETABLE semantic is identical to CALCULATE, the only difference being:

CALCULATE evaluates a scalar DAX expression in a Filter Context modified by

Filters and/or Global Modifiers,

while

CALCULATETABLE evaluates a table DAX expression in a Filter Context modified by

Filters and/or Global Modifiers.

We shall, for brevity, describe CALCULATE only

Introducing CALCULATE

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

In short, CALCULATE evaluates a DAX expression in a Filter Context
modified by Filters and/or Global Modifiers.

Why modifying the Filter Context? Many reasons:
1 – to avoid changing the internals of measures when creating variants;
2 – to avoid getting more than what is needed from the Filter Context
and selecting what is needed ex-post;
3 – to simplify and shorten the DAX code;
4 – to simplify the DAX code maintenance

Introducing CALCULATE

Data model:

Introducing CALCULATE

Why modifying the Filter Context?

The purpose is, when a
variation of a measure, in this
case [Sales], is needed….

…To avoid
doing this…

Why modifying the Filter Context?

Here no change to the Filter Context is applied, so:
1 – We need to change the internals of the measure;
2 – We are getting more than what we need from the Filter
Context (“M” and “F”) and selecting what is needed (only
“M”) ex-post;
3 – the DAX code is pretty long and not so easy to read and
understand

Why modifying the Filter Context?

And do this!

Why modifying the Filter Context?

Here a Filter on Customer[Gender] has been applied to the Filter
Context, so:
1 – We are changing the Filter Context, so we do NOT need to
change the measure internals and we can reference it;
2 – We are, therefore, getting only what we need from the Filter
Context (only “M”);
3 – the DAX code is short and easy to read, understand and
maintain

Why modifying the Filter Context?

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

1 – Adding Filters (explicitly/implicitly, overwriting/intersecting existing ones);

2 – Removing Filters;

3 – Modify the Columns involved in the model Relationships;

4 – Modify the Cross-Filter direction in the model Relationships

What modifications can be done to the
Filter Context through CALCULATE?

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

CALCULATE Filters are applied to the Filter Context in a logical AND

Example: CALCULATE ([Sales], Filter 1, Filter 2, …, Filter N)

Filter 1, Filter 2, … Filter N will be applied in AND (they must all be valid at the same time).

Therefore, AND conditions are natural and easy, while OR conditions are somehow challenging in
CALCULATE

What modifications can be done to the
Filter Context through CALCULATE?

Filter and Filter Context Definition

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

A Filter is a set of tuples for one or more columns.

A set of Filters is called Filter Context.

CALCULATE Filters can be expressed, in some circumstances, as Predicates.

Example: CALCULATE ([Sales], Products[Color] = "Red")

More on Filters
CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

CALCULATE Filters, though, are Tables, not Predicates.

The syntax sugar of a predicate can be used when filtering a set of columns from the same table
for a set of specific values, that can also be expressed as a DAX expression (NOT an explicit call to
a measure, though, more on this later).

Examples ALLOWED:
CALCULATE ([Sales], Products[Color] = "Red")
CALCULATE ([Sales], Products[Color] = "Red", Products[Size] = "S")
CALCULATE ([Sales], Products[Color] = "Red" && Products[Size] = "S")
CALCULATE ([Sales], Products[Color] = "Red" || Products[Size] = "S")
CALCULATE ([Sales], Products[ListPrice] = MAX (Products[ListPrice])

More on Filters
CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

CALCULATE Filters, though, are Tables, not Predicates.

This means it is utterly important to be expert of DAX table functions like

SUMMARIZE
CROSSJOIN
GENERATE
VALUES
DISTINCT
FILTER
ALL XXX To create the filter you need !

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

CALCULATE Filters, though, are Tables, not Predicates.

The syntax sugar of a predicate cannot be used when filtering a set of columns from different
tables for a set of specific values and when the values are to be calculated through a measure.

Examples NOT ALLOWED:
1 CALCULATE ([Sales], Products[Color] = [Top Sales Color])
2 CALCULATE ([Sales], Products[Color] = "Red" || Customer[EnglishEduction] = "Bachelors")
3 CALCULATE ([Sales], Products[Color] = "Red" && Customer[EnglishEduction] = "Bachelors")

note: the 3° example can be solved simply by
 CALCULATE ([Sales], Products[Color] = "Red«, Customer[EnglishEduction] = "Bachelors")

More on Filters

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

CALCULATE Filters are Tables, not Predicates.

The real DAX code executed when you write a predicate is the following:

Example:

CALCULATE ([Sales], Products[Color] = "Red")

is translated into:

CALCULATE ([Sales], FILTER (ALL (Products[Color]), Products[Color] = "Red"))

More on Filters

CALCULATE ([Sales], Products[Color] = "Red") is translated into:

CALCULATE ([Sales], FILTER (ALL (Products[Color]), Products[Color] = "Red"))

More on Filters

CALCULATE ([Sales], Products[Color] = "Red" || Products[Size] = "M") is translated into:

CALCULATE (
[Sales],
FILTER (

ALL (Products[Color], Products[Size]),
Products[Color] = "Red" || Products[Size] = "M"

)
)

….

More on Filters

CALCULATE ([Sales], Products[Color] = "Yellow" && Products[Size] = "M") is translated
into:

CALCULATE (
[Sales],
FILTER (

ALL (Products[Color], Products[Size]),
Products[Color] = "Yellow" && Products[Size] = "M"

)
)

….

More on Filters

CALCULATE ([Sales], Products[Color] = "Red" || Customer[EnglishEduction] = "Bachelors")

is not an allowed syntax , but you can solve this creating your own explicit table filter, a first

(not nice) attempt might be

Sales Red Products OR Bachelors Customers =
CALCULATE (
 [Sales],
 FILTER (
 Sales,
 RELATED ('Product'[Color]) = "Red" ||
 RELATED(Customer[EnglishEducation]) = "Bachelors"
)

)

OR between columns of differente tables

Sales Red Products OR Bachelors Customers =
CALCULATE (
 [Sales],
 FILTER (
 Sales,
 RELATED ('Product'[Color]) = "Red" ||
 RELATED(Customer[EnglishEducation]) = "Bachelors"
)

)

OR between columns of differente tables

FILTER COLUMNS AND NOT TABLES PLEASE, the below code will inject
the entire set of columns of the Products tabel into the Filter Context
when you only need two columns for the filter you are building

More on Filters

CALCULATE (
[Sales],
FILTER (

Products,
Products[Color] = "Yellow" && Products[Size] = "M"

)
)

FILTER COLUMNS AND NOT TABLES PLEASE, but what about when you cannot,
like (it seems) in the case of OR between columns of different tables ? But are
we sure we really cannot do better than injecting the ENTIRE expanded Sales
table in the filter context? We only need 2 columns to create the filter!

More on Filters

Sales Red Products OR Bachelors Customers =
CALCULATE (
 [Sales],
 FILTER (
 Sales,
 RELATED ('Product'[Color]) = "Red" ||
 RELATED(Customer[EnglishEducation]) = "Bachelors"
)

)

YES, we can do better thanks to table functions (only two columns):

More on Filters

Sales Red Products OR Bachelors Customers IMPROVED DAX =
CALCULATE (
 [Sales],
 FILTER (
 SUMMARIZE(Sales, 'Product'[Color], Customer[EnglishEducation]),
 'Product'[Color] = "Red" ||
 Customer[EnglishEducation] = "Bachelors"
)

)

Filters vs Global Modifiers

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

The second and subsequent inputs can either be a Filter or a Global Modifer. Global

Modifiers are not Filters, they are instructions to temporarily change the model:

(i) Removing Filters;

(ii) Modifying the Columns involved in the model Relationships;

(iii) Modifying the Cross-Filter direction in the model Relationships

Filter Modifier

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], …)

Each Filter can be applied with or without a Filter Modifier called KEEPFILTERS, see next

slides for details. A Filter Modifer is not a Global Modifier as it affects only the semantics

of a specific Filter

1 – Adding Filters explicitly and
overwriting existing ones

Filter Context in which [Sales M
Customers CALCULATE] is executed

Filter Context in which [Sales], within
CALCULATE, is executed

Filter Context in which [Sales M
Customers CALCULATE] is executed

Filter Context in which [Sales], within
CALCULATE, is executed

1 – Adding Filters explicitly and
overwriting existing ones

The explicitely added Filters will be applied with OVERWRITE policy
(eliminate existing Filters on Columns when adding the new ones). To
turn the policy to INTERSECT (keeping existing Filters on columns when
adding the new ones) you need to use the KEEPFILTERS Filter Modifier
on the Filter call.

Here we have shown examples of the OVERWRITE approach, now let
us go for the INTERSECT approach

1 – Adding Filters explicitly and
overwriting existing ones

Filter Context in which [Sales M
Customers CALCULATE] is executed

Filter Context in which [Sales], within
CALCULATE, is executed

1 – Adding Filters explicitly and
intersecting existing ones

1 – Adding Filters implicitely and
overwriting existing ones

CALCULATE performs Context Transition on all row contexts that are active at the

time of the call and on expanded version tables (so please iterate only the

minimum number of columsn you need!). The Filters injected in the Filter Context

through this process will be applied with OVERWRITE policy (to turn the policy to

INTERSECT you need to use the Filter Modifier KEEPFILTERS on the iterated table,

this is not very common and needed basically when there is an arbitrarily-shaped

set to deal with)

1 – Adding Filters implicitely and
overwriting existing ones

Context Transition consists in the invalidation of any Row Context and the creation of an

equivalent Filter Context.

In detail, this is what Context Transition does:

- it injects in the Filter Context a set of Fiters - for each column of all the row contexts that are

active at the time of the call to CALCULATE, a Filter is placed with OVERWRITE for the value of

that column. Inner Row Contexts will prevail on outer;

- it invalidates all Row Contexts active at the time of the call.

1 – Adding Filters implicitely and
overwriting existing ones

Context Transition does not guarantee to isolate a single row (the currently iterated

one), that is why it creates and equivalent Filter Context.

Therefore, Context Transition shoud never be triggered on tables that do not have a

primary key

The following two examples show Context Transition on a Calculated Column and

in a Measure (the OVERWRITE/INTERSECT part of the Filter placing is irrelevant in

these two examples, later on a specific example will be shown)

1 – Adding Filters implicitely and
overwriting existing ones

Context Transition

in a Calculated

Column:

OVERWRITE /

INTERSECT is

irrelevant as the

Filter Context is

initially empty

1 – Adding Filters implicitely and
overwriting existing ones

Context Transition in a Measure: here the Sales Cust Over

1.000 Measure will only consider Customers that, in the

current selection, have Sales above 1.000. OVERWRITE is

again irrelevant as there is no Filter, initally, on the

Customer table in the Filter Context

CY

2001

CustKey

11055

Customerkey [Sales]

11000 34.000

11055 68.000

12078 45.000

13456 57.000

13689 13.000

Year Month

2003 11

2003 12

2004 1

2004 2

1 – Adding Filters implicitely and
intersecting existing ones

Filter Context in which [Monthly
Average Sales] is executed

Filter Context in which [Sales], due to the implicit
CALCULATE and the Context Transition, is executed,

Row by row on VALUES (Calendar[Month NumberOfYear])

Sales

1.196.981

1.731.788

1.340.245

1.462.480

Month

11

12

1

2

Average =
1.432.873

1 – Adding Filters implicitely and
intersecting existing ones

Note:

In the preceding example, simply iterating on VALUES (Calendar[YearMonth]), which uniquely

idetifies each month in the arbitrarily-shaped set, would solve and no KEEPFILTERS would be

needed. Still, the preceding (simple ?!) example explains the issue, hopefully. Real-world

measures in which you have no other choice than using KEEPFILTERS on the iterated table are

very complex and would not fit this session. Example: Measures for budget allocations. To get

some examples, visit www.daxpatterns.com

2 – Removing Filters

Filter Context in which [ALL Sales
CALCULATE] is executed

Filter Context in which [Sales], within
CALCULATE, is executed

2 – Removing Filters

REMOVEFILTERS is a Global Modifier and is an alias for ALL which, when used as a

CALCULATE Global Modifier, does not act as a table function but, instead, removes

filters. To avoid confusion, the REMOVEFILTERS alias was introduced a few years

ago. As ALL, REMOVEFILTERS can be used with no arguments, with one entire

table or with a set of columns from a single table. Note: REMOVEFILTERS cannot

act as a table function, while ALL can

2 – Removing Filters

List of CALCULATE Global Modifiers to remove filters:

• REMOVEFILTERS ()

• ALL ()

• ALLSELECTED ()

• ALLEXCEPT ()

…

Any ALLXXX () function in other words! No time today to go through all of them

3 – Modify the model Relationships Columns

USERELATIONSHIP, a Global Modifier, will change the
columns involved in the Relationships between the
Calendar and Sales tables, so that Calendar[Date] will
temporarily filter Sales[Ship Date] and not Sales[Order
Date]. Once this is done, CALCULATE will evaluate
[Sales]

4 – Modify the model Relationships cross-filter direction

CROSSFILTER, a Global Modifier, will change the Cross-Filter
direction in the Relationships between the Product and Sales
tables, so that it will temporarily become bi-directional, here
the full options list:

Only for many-to-many-cardinality relationships!

https://learn.microsoft.com/en-us/dax/crossfilter-function

CALCULATE Global Modifiers

List of CALCULATE Global Modifiers:

• REMOVEFILTERS ()

• Any ALLXXX () function (they will NOT act as table functions when used as a top level function in CALCULATE)

• USERELATIONSHIPS ()

• CROSSFILTER ()

All these functions can be applied to the Filter Context (REMOVEFILTERS and ALLXXX) and to the model

(USERELATIONSHIPS and CROSSFILTER) in any order, the effect will be the same

CALCULATE Algorithm

1 – Evaluate the explicit Filters, if any, in the Filter Context active at the time of the
call to CALCULATE and create a copy of this Filter Context;

2 – Perform Context Transition on all row contexts (RC) active at the time of the
CALCULATE call (the Filter Context starts to change, inner RC will prevail on outer);

3 – Apply the Global Modifiers, if any (further Filter Context change);

4 – Apply the explicit Filters, evaluated in step 1, if any (final Filter Context change),
each with our without the Filter Modifier KEEPFILTERS;

5 – Evaluate the scalar expression in the modified Filter Context, return the result,
then put the Filter Context active at the time of the call to CALCULATE back in force

CALCULATE Algorithm

The algorithm steps are performed in the specific order outlined, therefore the two
following expressions give the same result:

CALCULATE ([Revenues], Products[Color] = "Red", REMOVEFILTERS (Products))

CALCULATE ([Revenues], REMOVEFILTERS (Products), Products[Color] = "Red")

In general, the order in which you insert Filters and Global Modifiers is irrelevant.
What IS relevant is managing the calls to functions to take advantage of the
algorithm

CALCULATE Algorithm

Focus on the details of the algorithm that are crucial to get the result we are
looking for:

1 – Evaluate the explicit Filters, if any, in the Filter Context active at the time of the
call to CALCULATE and create a copy of this Filter Context

The bold part is extremely important: Filters are a MEMORY to what the Filter
Context was at the time of the CALCULATE call, so you can restore a part of it if you
need to

CALCULATE Algorithm
Filters are a MEMORY to what the Filter Context was at the time of the CALCULATE
call, so you can restore a part of it if you need to. Example:

This Filter is evaluated in the Filter Context
active at the time of the CALCULATE call, so
before REMOVEFILTERS is called. Therefore,
even though, after REMOVEFILTERS, there
is no trace of the [CalendarYear] value, we
can restore it!

CALCULATE Algorithm

Focus on the details of the algorithm that are crucial to get the result we are
looking for:

2 – Perform Context Transition on all row contexts (RC) active at the time of the
CALCULATE call (the Filter Context starts to change, inner RC will prevail on outer)

The bold part is again extremely important: If more than one (nested) row context
was active at the time of the CALCULATE call, all of them will be converted to an
equivalent Filter Context. Inner row contexts will prevail on outer

CALCULATE Algorithm
If more than one (nested) row context was active at the time of the CALCULATE
call, all of them will be converted to an equivalent Filter Context. Inner row
contexts will prevail on outer.

Example:

CALCULATE Algorithm

Focus on the details of the algorithm that are crucial to get the result we are
looking for:

3 – Apply the Global Modifiers, if any (further Filter Context change)

The important detail here is that this step (step 3) comes after Context Transition
(step 2): Global Modifers can, therefore, override Context Transition

CALCULATE Algorithm
The important detail here is that this step (step 3) comes after Context Transition
(step 2): Global Modifers can, therefore, override Context Transition. Example:

Color

Black

ListPrice

5

ALL
(Product[ListPrice])

[MaxListPrice]

CALCULATE (
[MaxListPrice],
REMOVEFILTERS (Product[Listprice]
)

5 5 15

7 7 15

9 9 15

12 12 15

15 15 15

Max List Price = MAX ('Product'[ListPrice])

CALCULATE Algorithm
The important detail here is that this step (step 3) comes after Context Transition
(step 2): Global Modifers can, therefore, override Context Transition. Example with
better DAX code, no Context Transition at all!:

Remember that
Variables in DAX are…
constant values!

CALCULATE Algorithm

Focus on the details of the algorithm that are crucial to get the result we are
looking for:

4 – Apply the explicit Filters, evaluated in step 1 if any, to the Filter Context (final
change), with our without the Filter Modifier KEEPFILTERS

The bold part is again extremely important: KEEPFILTERS is applied to a Filter, so it
is always applied after Global Modifiers and you are free to decide, on each Filter, if
you want or not KEEPFILTERS (INTERSECT)

CALCULATE Algorithm
When and why is KEEPFILTERS useful?

How can Trendy Color Sales be higher than
Sales? This is due to OVERWRITE. The
existing Filter on the Color (slicer) will be
removed before injecting the CALCULATE
one and, therefore, always and only the
three trendy colors will be considered

CALCULATE Algorithm
When and why is KEEPFILTERS useful (continued)?

Note: you can decide on each Filter whether or not to use KEEPFILTERS but,
before you get to a rule like «I always insert it», please think about it as sometimes
you do not want it!

Using KEEPFILTERS, the existing Filter on the
Color (slicer) will be kept and then
intersected with the Filter injected by
CALCULATE

CALCULATE Algorithm
We have already seen this….

Here KEEPFILTERS is NOT what we want in the case in which we want to evaluate the ratio between the Sales to
Customers of one Gender and all the Sales of the Customers of one Gender

Filter Context in which [Sales M
Customers CALCULATE] is executed

Filter Context in which [Sales], within
CALCULATE, is executed

CALCULATE Algorithm

We have already seen this….

Now we have the desired result!

Filter Context in which [Sales M
Customers CALCULATE] is executed

Filter Context in which [Sales], within
CALCULATE, is executed

francesco.bergamaschi@kubisco.com (business)

francesco.bergamaschi@unibo.it (students)

https://it.linkedin.com/in/francescobergamaschi

www.kubisco.com

Contacts

mailto:francesco.bergamaschi@kubisco.com
mailto:francesco.bergamaschi@unibo.it
https://it.linkedin.com/in/francescobergamaschi

	Slide 1
	Slide 2: Sponsors
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Why modifying the Filter Context?
	Slide 14: Why modifying the Filter Context?
	Slide 15: Why modifying the Filter Context?
	Slide 16: Why modifying the Filter Context?
	Slide 17: Why modifying the Filter Context?
	Slide 18: What modifications can be done to the Filter Context through CALCULATE?
	Slide 19: What modifications can be done to the Filter Context through CALCULATE?
	Slide 20: Filter and Filter Context Definition
	Slide 21: More on Filters
	Slide 22: More on Filters
	Slide 23: More on Filters
	Slide 24: More on Filters
	Slide 25: More on Filters
	Slide 26: More on Filters
	Slide 27: More on Filters
	Slide 28: OR between columns of differente tables
	Slide 29: OR between columns of differente tables
	Slide 30: More on Filters
	Slide 31: More on Filters
	Slide 32: More on Filters
	Slide 33: Filters vs Global Modifiers
	Slide 34: Filter Modifier
	Slide 35: 1 – Adding Filters explicitly and overwriting existing ones
	Slide 36: 1 – Adding Filters explicitly and overwriting existing ones
	Slide 37: 1 – Adding Filters explicitly and overwriting existing ones
	Slide 38: 1 – Adding Filters explicitly and intersecting existing ones
	Slide 39: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 40: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 41: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 42: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 43: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 44: 1 – Adding Filters implicitely and intersecting existing ones
	Slide 45: 1 – Adding Filters implicitely and intersecting existing ones
	Slide 46: 2 – Removing Filters
	Slide 47: 2 – Removing Filters
	Slide 48: 2 – Removing Filters
	Slide 49: 3 – Modify the model Relationships Columns
	Slide 50: 4 – Modify the model Relationships cross-filter direction
	Slide 51: CALCULATE Global Modifiers
	Slide 52: CALCULATE Algorithm
	Slide 53: CALCULATE Algorithm
	Slide 54: CALCULATE Algorithm
	Slide 55: CALCULATE Algorithm
	Slide 56: CALCULATE Algorithm
	Slide 57: CALCULATE Algorithm
	Slide 58: CALCULATE Algorithm
	Slide 59: CALCULATE Algorithm
	Slide 60: CALCULATE Algorithm
	Slide 61: CALCULATE Algorithm
	Slide 62: CALCULATE Algorithm
	Slide 63: CALCULATE Algorithm
	Slide 64: CALCULATE Algorithm
	Slide 65: CALCULATE Algorithm
	Slide 66
	Slide 67

