Understanding CALCULATE - the
gueen of all DAX functions

Francesco Bergamaschi, M.Eng, M.Econ, MBA
Professor & Consultant
francesco.bergamaschi@kubisco.com

A big thank you to our amazing partners
SO Ca%ew!:.' A’"ﬂ? [P plainwater i q l_)s | Kimura

webdashboard

-

S Sifters creates. VOICON [mbuaredtor Sl oanedt OAAltudes

ANE " | 0N DED/T/. E
DATAK”\]GDOM » POWERBI WHITE LABEL o S DHTH
POURTAL 10 rp\ = GENER/ZTIE R

(pmountdata sopragysteria - Soomnslgh! (0 o{éXJ’ rsashData @

raedt-Bl

: I
casidosh MINOVA SIGNON # By roicoies AR

Management Information Consultin

aver 5l Quano Than ég’

About me

 Master of Science in IT Engineering, Master of Science in Economics, MBA
 Professor of Bl & Analytics @UniBO & @Bologna Business School
e Visiting Professor @UNIVPM e @UNICATT

Bl & Analytics Consultant

* Lecturerin DAX and Tabular since 2014

 Co-founding member of kubisco (www.kubisco.com)

 Co-founding member of the Power Bl User Group ltaly

 Current Focus: Composite Models and Visual Context

Jkubisco www.kubisco.com

c UG 'taly Power Bl User Group

http://www.kubisco.com/

Outline iPBIG

* Introducing CALCULATE

Why modifying the Filter Context?

 What modifications can be done to the Filter Context through CALCULATE?
* Filter and Filter Context Definition

* More on Filters

e Filters vs Global Modifiers

* Filter Modifier

 Adding Filters explicitly and overwriting existing ones
* Removing Filters

 Modify the model Relationships Columns
 Modify the model Relationships cross-filter direction
e CALCULATE Global Modifiers

e CALCULATE Algorithm

e CALCULATE Alogrithm re-cap examples

Foreword PBIG

CALCULATE is preceived as a complex function. DAX is perceived as a complex language.

Both are misperceptions.
CALCULATE is a simple and powerful function. DAX is a simple and powerful language.
Point is that simple does not mean easy.

CALCULATE and DAX in general can be used in complex scenarios as they are powerful but
you can also use both in simple scenarios and complexity does not show up

It is what we want to do that MIGHT be complex, not CALCULATE or DAX in general. As
they are both powerful, theyt can ALSO be used in COMPLEX scenarios

Foreword PBIG

DAX Pillars are only six (learn them)!

Filter Context
Row Context
terators

Context Transition
Expanded Tables
Visual Context

Introducing CALCULATE

CALCULATE documentation (dax.guide)

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

In short, CALCULATE evaluates a scalar DAX expression in a Filter
Context modified by Filters and/or Modifiers.

CALCULATE works ONLY with the Filter Context. The scalar expression
must, therefore, be meaningful in absence of Row Context

https://dax.guide/calculate/

Introducing CALCULATE

CALCULATE is implicitely called anytime a reference to a measure is done.

[Measure] is executed as CALCULATE ([Measure])

Due to the Context Transition (more on this later) performed by CALCULATE, the
practice of referencing measures omitting the table name has been put in force
([Measure] and not Table[Measure]). In fact, Measures can be placed in any table
without affecting their results. They have nothing to do with any particular table.

Columns, on the contrary, are hardwired to tables, so it makes sense to reference
them as Table[Column]

Introducing CALCULATE

CALCULATE works ONLY with the Filter Context. The scalar expression must,
therefore, be meaningful in absence of Row Context

CALCULATE ([Measure], ...) OK
CALCULATE (< Explicit scalar DAX code >, ...) OK
CALCULATE (Table[Column],) NOT OK (Row Context needed)

CALCULATE (RELATED (Table[Column], ...) NOT OK (Row Context needed)

Introducing CALCULATE

CALCULATETABLE semantic is identical to CALCULATE, the only difference being:

CALCULATE evaluates a scalar DAX expression in a Filter Context modified by
Filters and/or Global Modifiers,

while

CALCULATETABLE evaluates a table DAX expression in a Filter Context modified by
Filters and/or Global Modifiers.

We shall, for brevity, describe CALCULATE only

Introducing CALCULATE

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

In short, CALCULATE evaluates a DAX expression in a Filter Context
modified by Filters and/or Global Modifiers.

Why modifying the Filter Context? Many reasons:

1 —to avoid changing the internals of measures when creating variants;
2 —to avoid getting more than what is needed from the Filter Context
and selecting what is needed ex-post;

3 —to simplify and shorten the DAX code;

4 —to simplify the DAX code maintenance
e B D e

. IPBIG
Introducing CALCULATE

[E] Calendar E] Customer

Date CustomerKey
Espandi vV Espandi vV

: 1 @ Sales 1

@ CustomerKey

Data mOdE| : """""""" A * OrderDate .

4 x ProductKey * 4
4 *
SalesTerritoryKey
[E% Ship Date

1 Espandi vV 1

@ SalesTerritory @ Product
SalesTerritoryKey ProductKey

Espandi vV Espandi vV

T - iPBIG
Why modifying the Filter Context? ®"

1 Sales =
2 SUMX(
3 Sales,
4 Sales[OrderQuantity|*Sales[UnitPrice]
5)
Color Sales
Black = 3.851.091
Blue 860.381
The purpose is, when a Multi | 42.099
variation of a measure, in this VA | 18a3nd
case [Sales], is needed.... e | > onna0n S
White 2.230 []2002
Yellow 1.853.296 M 2003
Totale 9.791.060 [12004

iPBIG
Why moditying the Filter Context?

1 Sales M Customers =
2 SUMX(
3 FILTER (
4 Sales,
5 RELATED(Customer[Gender])="M"
6)>
7 Sales[OrderQuantity]*Sales[UnitPrice]
8)
Color Sales Sales M Customers
Black | 3.851.091 1.917.049
Blue 860.381 403.857
TO VO] d Multi | 42.099 21310
coe NA 184.354 92.449
. . Red 953.203 511.608 Cilendartear v
d olN g t h 1S... Silver | 2.044.407 974,592 12001
White 2230 1142 L[12002
Yellow 1.853.296 936.731 2003
Totale 9.791.060 4.858.738 [12004

Sales =
SUMX (
Sales,

)

Sales M Customers
SUMX (
FILTER (
Sales,
RELATED(Customer[Gender])="M"

)5
Sales[OrderQuantity]|*Sales[UnitPrice]

00 N O L1 D W N RV A WNBR

)
I

Sales|[OrderQuantity|*Sales[UnitPrice]

Why moditying the Filter Context?

Color Sales

Black | 3.851.091
Blue 860.381
Multi 42.099
NA 184.354
Red 953.203
Silver = 2.044.407
White 2.230

Yellow | 1.853.296
Totale 9.791.060

iPBIG

POWER Bl GEBRUIKERSGROEP

Sales M Customers

1.917.049
403.857
21.310
92.449
511.608
974.592
1.142
936.731
4.858.738

Here no change to the Filter Context is applied, so:

1 — We need to change the internals of the measure;
2 — We are getting more than what we need from the Filter
Context (“M” and “F”) and selecting what is needed (only

“M”) ex-post;

CalendarYear

12001
12002
H 2003
[12004

3 —the DAX code is pretty long and not so easy to read and

understand

Why modifying the Filter Context? =

1 Sales M Customers CALCULATE =

And do this!

2 CALCULATE(

3
4
5)

[Sales],
Customer|[Gender] = "M"
Color Sales Sales M Customers Sales M Customers CALCULATE

Black | 3.851.091
Blue 860.381
Multi 42.099
NA 184.354
Red 953.203
Silver | 2.044.407
White 2.230
Yellow | 1.853.296
Totale 9.791.060

iPBIG

1.917.049 1.917.049
403.857 403.857
21.310 21.310
92.449 92.449
511.608 511.608 Cotendarvear
974.592 974592 12001
1.142 1.142 L[J]2002
936.731 936.731 2003
4.858.738 4.858.738 [12004

fing t 1t foxt? IPBIG
Why moditying the Filter Context:
Color Sales Sales M Customers CALCULATE
Black | 3.851.091 1.917.049
1 Sales = Blue = 860.381 403.857
2 SUMX(Multi 42.099 21.310
3 Sales NA 184.354 92.449
’ Red 953.203 511.608 Catendarvear
4 Sales[OrderQuantity]*Sales[UnitPrice] Silver | 2.044.407 974.592 12001
5) White 2.230 1142 12002
Yellow 1.853.296 936731 2003
Totale 9.791.060 4.858.738 12004
1 Sales M Customers CALCULATE = Here a Filter on Customer[Gender] has been applied to the Filter
Context, so:
2 CALCULATE(1 — We are changing the Filter Context, so we do NOT need to
3 [Sales], change the measure internals and we can reference it;
4 Customer[Gender] = "M" 2 — We are, therefore, getting only what we need from the Filter
5) Context (only “M”);
3 — the DAX code is short and easy to read, understand and
maintain
I B e

What modifications can be done to the 1PBIG
Filter Context through CALCULATE?

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)
1 — Adding Filters (explicitly/implicitly, overwriting/intersecting existing ones);

2 — Removing Filters;

3 — Modify the Columns involved in the model Relationships;

4 — Modify the Cross-Filter direction in the model Relationships

What modifications can be done to the 1PBIG
Filter Context through CALCULATE?

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

CALCULATE Filters are applied to the Filter Context in a logical AND
Example: CALCULATE ([Sales], Filter 1, Filter 2, ..., Filter N)
Filter 1, Filter 2, ... Filter N will be applied in AND (they must all be valid at the same time).

Therefore, AND conditions are natural and easy, while OR conditions are somehow challenging in
CALCULATE

iPBIG

EEEEEEEEEEEEEEEEEEEEEE

Filter and Filter Context Definition

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

A Filter is a set of tuples for one or more columns.

A set of Filters is called Filter Context.

CALCULATE Filters can be expressed, in some circumstances, as Predicates.

Example: CALCULATE ([Sales], Products[Color] = "Red")

Examples ALLOWED:

More on Filters

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

CALCULATE Filters, though, are Tables, not Predicates.

iIPBIG

Bl GEBRUIKERSGROE

The syntax sugar of a predicate can be used when filtering a set of columns from the same table
for a set of specific values, that can also be expressed as a DAX expression (NOT an explicit call to
a measure, though, more on this later).

CALCULATE ([Sales], Products[Color] = "Red")
CALCULATE ([Sales], Products[Color] = "Red", Products[Size] ="S")
CALCULATE ([Sales], Products[Color] = "Red" && Products[Size] = "S")
CALCULATE ([Sales], Products[Color] = "Red" | | Products[Size] ="S")
CALCULATE ([Sales], Products|ListPrice] = MAX (Products|ListPrice])
I B e

More on Filters iPBIG

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

CALCULATE Filters, though, are Tables, not Predicates.

This means it is utterly important to be expert of DAX table functions like

SUMMARIZE
CROSSJOIN
GENERATE
VALUES
DISTINCT
FILTER

ALL XXX To create the filter you need !

iPBIG

POWER Bl GEBRUIKERSGROEP

More on Filters

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

CALCULATE Filters, though, are Tables, not Predicates.

The syntax sugar of a predicate cannot be used when filtering a set of columns from different
tables for a set of specific values and when the values are to be calculated through a measure.

Examples NOT ALLOWED:

1 CALCULATE ([Sales], Products[Color] = [Top Sales Color])

2 CALCULATE ([Sales], Products[Color] = "Red" | | Customer[EnglishEduction] = "Bachelors")
3 CALCULATE ([Sales], Products[Color] = "Red" && Customer[EnglishEduction] = "Bachelors")

note: the 3° example can be solved simply by
CALCULATE ([Sales], Products[Color] = "Red«, Customer[EnglishEduction] = "Bachelors")

iPBIG

EEEEEEEEEEEEEEEEEEEEEE

More on Filters

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

CALCULATE Filters are Tables, not Predicates.

The real DAX code executed when you write a predicate is the following:

Example:

CALCULATE ([Sales], Products[Color] = "Red")

is translated into:

CALCULATE ([Sales], FILTER (ALL (Products[Color]), Products[Color] = "Red"))

More on Filters

CALCULATE ([Sales], Products[Color] = "Red") is translated into:

POWER Bl GEBRUIKERSGROEP

CALCULATE ([Sales],

FILTER (ALL (Products[Color]), Products[Color] = "Red"))

~

.

~

Coior |Z|
NA

Black

Silver

Red

White

Blue

Multi
Yellow

Grey

Silver/Black

I

Color
Red

-

/

POWER Bl GEBRUIKERSGROEP

More on Filters

CALCULATE ([Sales], Products[Color] = "Red" | | Products[Size] = "M") is translated into:

CALCULATE (
[Sales], ooy S TEEIE

Red

FILTER (4| e I
ALL (Products[Color], Products[Size]N = Black

M
\ \ White M
_n 11 g _n 1] Multi
Products[Color] = "Red" | | Products[Size] ="M ue |
. Multi M
Silver/Black

) Black 58 » Yellow M
Red 58 Red 62
) Blue 58 Red 44
Yellow 58 Red 48
Black M Red 52
White M Red 56

Blue M
: Red 60

Multi M

Yellow M

POWER Bl GEBRUIKERSGROEP

More on Filters

CALCULATE ([Sales], Products[Color] = "Yellow" && Products[Size] = "M") is translated
Into:

Color |z| Size E

CALCULATE (i
[Sales], e
FILTER (e

ALL (Products[Color], Products[Size] N\“Zﬁjﬁm
Products[Color] = "Yellow" && Products[Size] = "M" ek 58

) Blue 58
Yellow 58

~

) Black M
White M
Blue M
Yellow M
Yellow M

iPBIG

POWER Bl GEBRUIKERSGROEP

OR between columns of differente tavies

CALCULATE ([Sales], Products[Color] = "Red" | | Customer[EnglishEduction] = "Bachelors")
is not an allowed syntax, but you can solve this creating your own explicit table filter, a first
(not nice) attempt might be

Sales Red Products OR Bachelors Customers =
CALCULATE (
[Sales],
FILTER (
Sales,
RELATED ('Product'[Color]) = "Red" ||
RELATED(Customer[EnglishEducation]) =

"Bachelors™

)

iPBIG

POWER Bl GEBRUIKERSGROEP

OR between columns of differente tauies

Sales Red Products OR Bachelors Customers =
CALCULATE (

[Sales], SE
gl 12002
RELATED ('Product'[Color]) = "Red" || M 2003
RELATED(Customer[EnglishEducation]) = "Bachelors" 12004
)

) SalesTerritory Sales Sales Red Sales Red Products OR
Group Products Bachelors Customers

Europe 3.382.979 400.146 1.305.743

North America| 3.374.297 168.235 1.178.300

Pacific 3.033.784 384.821 1.639.090

Total 9.791.060 953.203 4.123.133

iPBIG

EEEEEEEEEEEEEEEEEEEEEE

More on Filters

FILTER COLUMNS AND NOT TABLES PLEASE, the below code will inject
the entire set of columns of the Products tabel into the Filter Context
when you only need two columns for the filter you are building

CALCULATE (
[Sales],
FILTER (
Products,
Products[Color] = "Yellow" && Products|Size] = "M"

iPBIG

EEEEEEEEEEEEEEEEEEEEEE

More on Filters

FILTER COLUMNS AND NOT TABLES PLEASE, but what about when you cannot,
like (it seems) in the case of OR between columns of different tables ? But are
we sure we really cannot do better than injecting the ENTIRE expanded Sales

table in the filter context? We only need 2 columns to create the filter!

Sales Red Products OR Bachelors Customers =
CALCULATE (
[Sales],
FILTER (
Sales,
RELATED ('Product'[Color]) = "Red" ||
RELATED(Customer[EnglishEducation]) = "Bachelors"

)

CALCULATE (
[Sales],
FILTER (

More on Filters iPBIG

YES, we can do better thanks to table functions (only two columns):

Sales Red Products OR Bachelors Customers IMPROVED DAX =

SUMMARIZE(Sales, 'Product'[Color], Customer[EnglishEducation]),
'Product'[Color] = "Red" ||

Customer[EnglishEducation] = "Bachelors”

) SalesTerritory Sales Sales Red Sales Red Products |Sales Red Products OR Calendarear
Group Products OR Bachelors Bachelors Customers 12001
Customers IMPROVED DAX [12002
Europe 3382979 7.724331 1.305.743 1305743 2003
NA 7.724.331 [12004

North America 3.374.297 7.724.331 1.178.300 1.178.300

Pacific 3.033.784 7.724.331 1.639.090 1.639.090

Total 9.791.060 7.724.331 4.123.133 4.123.133

. . iPBIG
Filters vs Global Modifiers

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

The second and subsequent inputs can either be a Filter or a Global Modifer. Global
Modifiers are not Filters, they are instructions to temporarily change the model:

(i) Removing Filters;

(i) Modifying the Columns involved in the model Relationships;

(iii) Modifying the Cross-Filter direction in the model Relationships
I B e

. . iPBIG
Filter Modifier

CALCULATE (<Scalar Expression>, [Filter/GlobalModifier 1], [Filter/GlobalModifier 2], ...)

Each Filter can be applied with or without a Filter Modifier called KEEPFILTERS, see next

slides for details. A Filter Modifer is not a Global Modifier as it affects only the semantics

of a specific Filter

1 Sales M Customers CALCULATE =
2 CALCULATE(

1 — Adding Filters explicitly and iPBIG
overwriting existing ones

3 [Sales], Filter Context in which [Sales], within
A Customer[Gender] = "M" CALCULATE, is executed
5) Filter Context in which [Sales M
Color Sales Sales M Customers Sales M Customers CALCULATE Customers CALCULATE] is executed
Black | 3.851.091 1.917.049 1.917.049
Blue 860.381 403.857 403.857 Color =] CalendarYear |~
Multi 42.099 21310 21310 Red 2003
NA 184.354 92.449 92.449
Red 953.203 511.608 511.608 | Catendertear
Silver | 2.044.407 974.592 974592 L2001
White 2.230 1.142 1142 [12002 Gender [~ |
Yellow 1.853.296 936.731 936.731 | 2003 M
Totale 9.791.060 4.858.738 4.858.738 12004

3
4
5)

[Sales],

1 — Adding Filters explicitly and iPBIG
overwriting existing ones

1 Sales M Customers CALCULATE =
2 CALCULATE(

Customer|Gender| = "M"

Gender Sales

Sales M Customers Sales M Customers CALCULATE

F

M

4.932.322
4.858.738

Totale 9.791.060

CalendarYear

12001
12002

Filter Context in which [Sales], within
CALCULATE, is executed

4.858.738
4.858.738 4.858.738
4.858.738 4.858.738

W 2003

12004

Filter Context in which [Sales M
Customers CALCULATE] is executed
CalendarYear |Z|
F 2003

1 — Adding Filters explicitly and 1PBIG
overwriting existing ones

The explicitely added Filters will be applied with OVERWRITE policy
(eliminate existing Filters on Columns when adding the new ones). To
turn the policy to INTERSECT (keeping existing Filters on columns when

adding the new ones) you need to use the KEEPFILTERS Filter Modifier
on the Filter call.

Here we have shown examples of the OVERWRITE approach, now let
us go for the INTERSECT approach

1 — Adding Filters explicitly and 4PBIG
Intersecting existing ones

1 Sales M Customers CALCULATé Intersect = Filter Context in which [Sales], within
2 CALCULATE(CALCULATE, is executed
3 [Sales],
4 KEEPFILTERS(Customer[Gender] = "M") Filter Context in which [Sales M
5) Customers CALCULATE] is executed
Gender Sales Sales M Customers Sales M Customers CALCULATE o
(12001
Intersect Gender [~| CalendarYear [~ |
[12002 . 003
F 4932322 2003
M 4.858.738 4.858.738 4.858.738 12004
Totale 9.791.060 4.858.738 4.858.738
Gender |Z|
M

1 — Adding Filters implicitely and 4PBIG
overwriting existing ones

CALCULATE performs Context Transition on all row contexts that are active at the
time of the call and on expanded version tables (so please iterate only the
minimum number of columsn you need!). The Filters injected in the Filter Context
through this process will be applied with OVERWRITE policy (to turn the policy to
INTERSECT you need to use the Filter Modifier KEEPFILTERS on the iterated table,

this is not very common and needed basically when there is an arbitrarily-shaped

set to deal with)

1 — Adding Filters implicitely and iPBIG
overwriting existing ones

Context Transition consists in the invalidation of any Row Context and the creation of an

equivalent Filter Context.

In detail, this is what Context Transition does:

- it injects in the Filter Context a set of Fiters - for each column of all the row contexts that are

active at the time of the call to CALCULATE, a Filter is placed with OVERWRITE for the value of

that column. Inner Row Contexts will prevail on outer;

- it invalidates all Row Contexts active at the time of the call.

overwriting existing ones

Context Transition does not guarantee to isolate a single row (the currently iterated

one), that is why it creates and equivalent Filter Context.

Therefore, Context Transition shoud never be triggered on tables that do not have a

primary key

The following two examples show Context Transition on a Calculated Column and

in a Measure (the OVERWRITE/INTERSECT part of the Filter placing is irrelevant in

these two examples, later on a specific example will be shown)

1 — Adding Filters implicitely and 4PBIG
overwriting existing ones

Filter Context after Context Transition

X Vv PK =N feorortH st]
Context Transition 1 Product Sales Column =|=ilee]]l

in a Calculated 2 [S 3 1 es] a57827) | 52 H

Column:

ProductKey |~ | EnglishProductName |~ | Color |~ | SafetyStockLevel |~ | ListPrice |~ | Size |~ | Class |~ | LT UGN [T])]
OVERWRITE / 372 Road-150 Red, 48 Red 100 3578,27 48 H 1.205.877
INTERSECT is 370 Road-150 Red, 62 Red 100 357827 62 H 1.202.299
373 Road-150 Red, 52 Red 100 357827 52 H
irrelevant as the 374 Road-150 Red, 56 Red 100 3578,27 56 H 1.055590
Filter Context i The Filter Context is initially empty (this is a calculated Column) and a Row Context is B
active on he Product Table. The implicit CALCULATE of a measure reference triggers 979.961
. ol Context Transition. The Filter Context is then filled with Filters and the Row Context is 979.036

initially empty o , o .
invalidated. In case of multiple row contexts, this will happen for all of them. The inner 9671607
Row Context will prevail on the outer. 954716

1 — Adding Filters implicitely and 4PBIG
overwriting existing ones
1 Sales Cust Over 1.000 = Context Transition in a Measure: here the Sales Cust Over
i SUMX\(/ALUES(Customer[CustomerKey]), 1.000 Measure will only consider Customers that, in the
: ::_F;UzzlescuPPentcuStomer‘cumentconte“ = [Sales] current selection, have Sales above 1.000. OVERWRITE is
6 IF (again irrelevant as there is no Filter, initally, on the
7 SalesCurrentCustomerCurrentContext > 1000,
8 SalesCurrentCustomerCurrentContext Customer table in the Filter Context
13) : CalendarYear Sales Sales Cust
m Over 1.000
B [custcy 11000 34.000 2001 3.266.374 | 3.187.376
2001 ||| 11055 11055 | 68.000 2002 6.530.344 6.228.613
12078 45 000 2003 9.791.060 8.727.456
13456 57.000 2004 9.770.900 8.321.146
13689 13.000 Total 29.358.677 27.847.299

1 — Adding Filters implicitely and

Intersecting existing ones

1 Monthly Average Sales =

2 AVERAGEX (

3 |[KEEPFILTERS(VALUES ('Calendar'[MonthNumberOfYear])),

4 [Sales]

5)

CalendarYear Sales Monthly Average Sales

=] 2003 2.928.769 1.464.384
11 1.196.981 1.196.981
12 1.731.788 1.731.788

=] 2004 2.802.725 1.401.362
1 1.340.245 1.340.245
2 1.462.480 1.462.480
Totale 5.731.494 1.432.873

CalendarYe

ar, MonthNumberOfYear

A |=l 2003
1

O

OO0]
0~ v s W N

o

||

W i

A |=l 2004

| Il
|

Filter Context in which [Monthly
Average Sales] is executed

iPBIG

POWER Bl GEBRUIKERSGROEP

Average =
1.432.873

2003 11 11
2003 12 12
2004 1 1
2004 2 2

Sales
1.196.981
1.731.788
1.340.245
1.462.480

Filter Context in which [Sales], due to the implicit
CALCULATE and the Context Transition, is executed,
Row by row on VALUES (Calendar[Month NumberOfYear])

1 — Adding Filters implicitely and — iPBIG
Intersecting existing ones

Note:
In the preceding example, simply iterating on VALUES (Calendar[YearMonth]), which uniquely

idetifies each month in the arbitrarily-shaped set, would solve and no KEEPFILTERS would be
needed. Still, the preceding (simple ?!) example explains the issue, hopefully. Real-world
measures in which you have no other choice than using KEEPFILTERS on the iterated table are
very complex and would not fit this session. Example: Measures for budget allocations. To get

some examples, visit www.daxpatterns.com

iPBIG

POWER Bl GEBRUIKERSGROEP

2 — Removing Filters

1ALL Sales CALCULATE = I
ilter Context in which [Sales], within
2 CALCULATE(CALCULATE, is executed
3 [Sales],
5) CALCULATE] is executed
Gender Sales ALL Sales CALCULATE elendartear Calé -
2001 F 003
F 4932.322 29.358.677 2002
M 4.858.738 29.358.677 H 2003
Totale 9.791.060 29.358.677 2004

iPBIG

EEEEEEEEEEEEEEEEEEEEEE

2 — Removing Filters

REMOVEFILTERS is a Global Modifier and is an alias for ALL which, when used as a
CALCULATE Global Modifier, does not act as a table function but, instead, removes
filters. To avoid confusion, the REMOVEFILTERS alias was introduced a few years
ago. As ALL, REMOVEFILTERS can be used with no arguments, with one entire
table or with a set of columns from a single table. Note: REMOVEFILTERS cannot

act as a table function, while ALL can

POWER Bl GEBRUIKERSGROEP

2 — Removing Filters

List of CALCULATE Global Modifiers to remove filters:
* REMOVEFILTERS ()

 ALL()

 ALLSELECTED ()

* ALLEXCEPT ()

Any ALLXXX () function in other words! No time today to go through all of them ®
I B e

3 — Modify the model Relationships Columns

iPBIG

POWER Bl GEBRUIKERSGROEP

Calendar O Customer o : 8] Product IO
1 Shippings = Dat_ev ® CUS_thefKev i
2 CALCULATE(S — S—
3 [Sales], [,\
4 USERELATIONSHIP(Sales[Ship Date], 'Calendar'[Date]) v@ % -
5) Sales)

o Y S N :
CalendarYear Sales Shippings * 0\ sy
[B: Ship Date

2001 3.266.374 3.105.587
2002 6530344 6576979 USERELATIONSHIP, a Global Modifier, will change the

columns involved in the Relationships between the
2003 9.791.060 9.517.549 Calendar and Sales tables, so that Calendar[Date] will

temporarily filter Sales[Ship Date] and not Sales[Order
2004 2.770.900 10.158.562 Date]. Once this is done, CALCULATE will evaluate
Totale 29.358.677 29.358.677 [Sales]

4 — Modify the model Relationships cross-filter direction '“PBIG
Calendar oy § Customer O Product 3
1# Colors Sold = Date ® customerkey ProductKey
2 CALCULATE(ESpandiv‘l 1 Espandi ™ 1 Espandiv1
3 DISTINCTCOUNT('Product'[Color]), [’
4 CROSSFILTER(Sales[ProductKey], 'Product'[ProductKey], BOTH) }
vl * a
>) Sales IO
@ CustomerKey
CalendarYear Sales # ColorsSold g o e
B Ship Date
2001 3.266.374 3 il
2002 6.530.344 4
2003 9791.060 8 CROSSFILTER, a Global Modifier, will change the Cross-Filter
direction in the Relationships between the Product and Sales
2004 9.770.900 3 tables, so that it will temporarily become bi-directional, here
Totale 29.358.677 10 the full options list: [goen
= None
= OnelWay
Only for many-to-many-cardinality relationships! gﬂzﬂjf,jf;ﬁﬁi;iiiit

https://learn.microsoft.com/en-us/dax/crossfilter-function

iPBIG

POWER Bl GEBRUIKERSGROEP

CALCULATE Global Modifiers

List of CALCULATE Global Modifiers:

e REMOVEFILTERS ()
Any ALLXXX () function (they will NOT act as table functions when used as a top level function in CALCULATE)

« USERELATIONSHIPS ()
« CROSSFILTER ()

All these functions can be applied to the Filter Context (REMOVEFILTERS and ALLXXX) and to the model
(USERELATIONSHIPS and CROSSFILTER) in any order, the effect will be the same

iPBIG

EEEEEEEEEEEEEEEEEEEEEE

CALCULATE Algorithm

1 — Evaluate the explicit Filters, if any, in the Filter Context active at the time of the
call to CALCULATE and create a copy of this Filter Context;

2 — Perform Context Transition on all row contexts (RC) active at the time of the
CALCULATE call (the Filter Context starts to change, inner RC will prevail on outer);

3 — Apply the Global Madifiers, if any (further Filter Context change);

4 — Apply the explicit Filters, evaluated in step 1, if any (final Filter Context change),
each with our without the Filter Modifier KEEPFILTERS;

5 — Evaluate the scalar expression in the modified Filter Context, return the result,
then put the Filter Context active at the time of the call to CALCULATE back in force

. iPBIG
CALCULATE Algorithm

The algorithm steps are performed in the specific order outlined, therefore the two
following expressions give the same result:

CALCULATE ([Revenues], Products[Color] = "Red", REMOVEFILTERS (Products))
CALCULATE ([Revenues], REMOVEFILTERS (Products), Products[Color] = "Red")
In general, the order in which you insert Filters and Global Modifiers is irrelevant.

What IS relevant is managing the calls to functions to take advantage of the
algorithm

. iPBIG
CALCULATE Algorithm

Focus on the details of the algorithm that are crucial to get the result we are
looking for:

1 — Evaluate the explicit Filters, if any, in the Filter Context active at the time of the
call to CALCULATE and create a copy of this Filter Context

The bold part is extremely important: Filters are a MEMORY to what the Filter
Context was at the time of the CALCULATE call, so you can restore a part of it if you
need to

iPBIG

POWER Bl GEBRUIKERSGROEP

CALCULATE Algorithm

Filters are a MEMORY to what the Filter Context was at the time of the CALCULATE
call, so you can restore a part of it if you need to. Example:

X / 1 Sales of the Year =
; CALCL[J;AIE(] This Filter is evaluated in the Filter Context
ales], . |
4| REMOVEFILTERS ('Calendar’), active at the time of the CALCULATE call, so
> | [VALUES (Colendar [Calendarear]) before REMOVEFILTERS is called. Therefore,
6)

even though, after REMOVEFILTERS, there

calendartear - 2001 o o o rotal is no trace of the [CalendarYear] value, we
EnglishMonth Sales Sales of Sales Sales of Sales Sales of Sales Sales of Sales Sales of the ’
Name the Year the Year the Year the Year Year can restore |t |

January 3.266.374 596.747 | 6.530.344| 438.865 | 9.791.060f 1.340.245 | 9.770.900| 2.375.857| 29.358.677

February | 3.266.374| 550.817 | 6.530.344| 489.090 | 9.791.060| 1.462.480 | 9.770.900| 2.502.387| 29.358.677

March 3.266.374 644.135 | 6.530.344| 485575 | 9.791.060| 1.480.905 | 9.770.900| 2.610.615| 29.358.677

April | 3.266.374 663.692 | 6.530.344| 506.399 | 9.791.060| 1.608.751 | 9.770.900| 2.778.842| 29.358.677

May 3.266.374 673.556 | 6.530.344 562.773 |1 9.791.060| 1.878.318 | 9.770.900| 3.114.646| 29.358.677

June | 3.266.374 676.764 | 6.530.344] 554.799 | 9.791.060| 1.949.361 | 9.770.900| 3.180.924| 29.358.677

July 473.388 | 3.266.374 500.365 | 6.530.344] 886.669 | 9.791.060 50.841 | 9.770.900| 1.911.263| 29.358.677

August | 506.192 | 3.266.374 546.001 | 6.530.344] 847.414 | 9.791.060 9.770.900| 1.899.607| 29.358.677

September 473.943 | 3.266.374 350.467 | 6.530.344| 1.010.258 | 9.791.060 9.770.900| 1.834.668| 29.358.677

October | 513.329 | 3.266.374 415.390 | 6.530.344| 1.080.450 | 9.791.060 9.770.900| 2.009.169| 29.358.677

November 543993 | 3.266.374 335.095 | 6.530.344| 1.196.981 | 9.791.060 9.770.900| 2.076.070| 29.358.677

December 755.528 | 3.266.374 577.314 | 6.530.344] 1.731.788 | 9.791.060 9.770.900| 3.064.630| 29.358.677

Total 3.266.374 |3.266.374] 6.530.344 |6.530.344] 9.791.060 |9.791.060| 9.770.900 |9.770.900 | 29.358.677 | 29.358.677

. iPBIG
CALCULATE Algorithm

Focus on the details of the algorithm that are crucial to get the result we are
looking for:

2 — Perform Context Transition on all row contexts (RC) active at the time of the
CALCULATE call (the Filter Context starts to change, inner RC will prevail on outer)

The bold part is again extremely important: If more than one (nested) row context
was active at the time of the CALCULATE call, all of them will be converted to an
equivalent Filter Context. Inner row contexts will prevail on outer

. IPBIG
CALCULATE Algorithm

If more than one (nested) row context was active at the time of the CALCULATE
call, all of them will be converted to an equivalent Filter Context. Inner row
contexts will prevail on outer.

1 NeSted Row Context Product Sales = _pf A set offilters will be added to the initially empty Filter”
Fxam p|e 2 -- Outer Row Context on Table Product | Context, one for each column in the outer Row Context

3 SUMX(Here the inner Row Context will go again one row at a

—| - time scanning the full table, and the iterated row will

4 -- Inner Row Context on Table Product| prevail on the one iterated from the outer Row Context

5 "Product’, _ _ o

. rsales] — CALCULATE will trigger Context Transition

7 and invalidate both Row Contexts -

EnglishProductName |~ | Color |~ | SafetyStockLevel |~ | ListPrice |~ | Size |~ | Class |~ || Product Sales Column |+||(I\ESEL LA HTE (f LY. [T EFI -

Road-150 Red, 48 Red 100 357827 48 H 1.205.877 | 29.358.677 | *

Road-150 Red, 62 Red 100 357827 62 H 1.202.299 29.358.677

Road-150 Red, 52 Red 100 357827 52 H 1.080.638 29.358.677

Road-150 Red, 56 Red 100 357827 56 H 1.055.590 29.358.677

Road-150 Red, 44 Red 100 357827 44 H 1.005.494 29.358.677

iPBIG

EEEEEEEEEEEEEEEEEEEEEE

CALCULATE Algorithm

Focus on the details of the algorithm that are crucial to get the result we are
looking for:

3 — Apply the Global Modifiers, if any (further Filter Context change)

The important detail here is that this step (step 3) comes after Context Transition
(step 2): Global Modifers can, therefore, override Context Transition

. IPBIG
CALCULATE Algorithm

The important detail here is that this step (step 3) comes after Context Transition
(step 2): Global Modifers can, therefore, override Context Transition. Example:

1 Sales MaxListPrice Products =

2 CALCULATE
o o, Max List Price = MAX ('Product'[ListPrice])
4 FILTER(

5 IALL ('"Product’'[ListPrice])l

6 ‘Product'[ListPrice] =

7 ICALCULATE([Max List Pr‘ice]l, REMOVEFILTERS('Product'[ListPrice]) CALCULATE(

8)

ALL . [MaxListPrice]

9) ’
10) (Product[ListPrice]) | -MaxListPrice] | o OVEFILTERS (ProductiListprice]
Color Sales Sales MaxListPrice Products

|Black | 8.838.412 712.123

Blue 2.279.096 1.511.500 Color Lé\/% 7 7 15

Multi 106.471 9 9 15

NA 435.117 Black 12 12 1

Red 7.724.331 5.549.897 >

Silver 5.113.389 628.998 15 15 15

White 5.106

Yellow | 4.856.756 1.480.507

Totale | 29.358.677 5.549.897

. iPBIG
CALCULATE Algorithm -

The important detail here is that this step (step 3) comes after Context Transition
(step 2): Global Modifers can, therefore, override Context Transition. Example with
better DAX code, no Context Transition at alll:

1 Sales MaxListPrice Products IMPROVED DAX =
ZIVAR _MaxListPrice = [Max List Pr‘ice]l

3 RETURN

4 CALCULATE(

5 [sales],

6 I'Pr‘oduct'[ListPr‘ice] = _MaxListPr‘iceI

7)
Eolor Sales Sales MaxListPrice Products |Sales MaxListPrice Products IMPROVED DAX Re m e m b e r t h at
Black 8.838.412 712123 712123 . .
Blue | 2279.096 1.511.500 1.511.500 V b I DAX
ue | 227305¢ ariables in are...
NA 435117
Red | 7724331 5.549.897 5.549.897 constant va I ues |
Silver 5.113.389 628.998 628.998
White 5.106
Yellow 4.856.756 1.480.507 1.480.507
Totale | 29.358.677 5.549.897 5.549.897

CALCULATE Algorithm

iPBIG

EEEEEEEEEEEEEEEEEEEEEE

Focus on the details of the algorithm that are crucial to get the result we are

looking for:

4 — Apply the explicit Filters, evaluated in step 1 if any, to the Filter Context (final
change), with our without the Filter Modifier KEEPFILTERS

The bold part is again extremely important: KEEPFILTERS is applied to a Filter, so it
is always applied after Global Modifiers and you are free to decide, on each Filter, if
you want or not KEEPFILTERS (INTERSECT)

iPBIG

POWER Bl GEBRUIKERSGROEP

CALCULATE Algorithm

When and why is KEEPFILTERS useful?

1 Trendy Color Sales =
2 CALCULATE(

3 [Sales],
4 '"Product’'[Color] IN {"Black", "Blue", "Silver"}
5)

How can Trendy Color Sales be higher than

5 .
SalesTerritoryCountry Sales Trendy Color Sales ;mr Sales' ThIS IS due to OVERWRITE The
Select all . H . . .

il TS 7916622] | 1) s existing Filter on the Color (slicer) will be
Canada 1.169.062 978.286 | M Biue removed before injecting the CALCULATE
France 1.298.137 1.534.561 M Grey d th f I d I th
Germany 1476.614 1684235 | M wut one and, therefore, always and only the
United Kingdom 1681.648 2031.972| | W na three trendy colors will be considered
United States 5.083.784 5.085.021| | M Red
Total 15.406.876 16.230.897) | I silver

B Silver/Black

B White

B Yellow

. iPBIG
CALCULATE Algorithm -

When and why is KEEPFILTERS useful (continued)?

1 Trendy Color Sales =
2 CALCULATE(
3 [Sales],

4 KEEPFILTERS(
AT Using KEEPFILTERS, the existing Filter on the
7) . .
Color (slicer) will be kept and then
SalesTerritoryCountry Sales Trendy Color Sales E"l” . . . L.
P 4697632 s5345 | oo intersected with the Filter injected by
Canada 1.169.062 169.503 W Bl
France 1.298.137 188.680 B Grey CA LC U LATE
Germany 1.476.614 266.537 W Multi
United Kingdom 1.681.648 321.907 W nA
United States 5.083.784 779.015 B Red
Total 15.406.876 2.279.096 L] Silver
B Silver/Black
Bl White
W vellow

Note: you can decide on each Filter whether or not to use KEEPFILTERS but,
before you get to a rule like «I always insert it», please think about it as sometimes
you do not want it!

. iPBIG
CALCULATE Algorithm

We have already seen this....

1 Sales M Customers CALCULATE Intersect = Filter Context in which [Sales], within
2 CALCULATE(CALCULATE, is executed
3 [Sales],
4 KEEPFILTERS(Customer[Gender] = "M") Filter Context in which [Sales M
5) Customers CALCULATE] is executed
Gender Sales Sales M Customers Sales M Customers CALCULATE adonm
Intersect Gender || CalendarYear |~
[12002 F 2003
F 4.932.322 W 2003
M 4.858.738 4.858.738 4.858.738 12004
Totale 9.791.060 4.858.738 4.858.738
Gender |~
M

Here KEEPFILTERS is NOT what we want in the case in which we want to evaluate the ratio between the Sales to
Customers of one Gender and all the Sales of the Customers of one Gender

. iPBIG
CALCULATE Algorithm -

We have already seen this....

Filter Context in which [Sales], within
1 Sales M Customers CALCULATE = CALCULATE, is executed
2 CALCULATE(
3 [Sales], Filter Context in which [Sales M
4 Customer\[Gender\] — "M" CUStomeI’S CALCULATE] |S executed
5)
Gender Sales Sales M Customers Sales M Customers CALCULATE atenartear e
L 12001 : 2003

F 4932322 4.858.738 [12002
M 4.858.738 4.858.738 4.858.738 W 2003
Totale 9.791.060 4.858.738 4.858.738 [12004

Gender |~

M

Now we have the desired result!

Contacts iPBIG

francesco.bergamaschi@kubisco.com (business)

francesco.bergamaschi@unibo.it (students)

https://it.linkedin.com/in/francescobergamaschi

Cxkubisco www.kubisco.com
C UG 'taly Power Bl User Group

mailto:francesco.bergamaschi@kubisco.com
mailto:francesco.bergamaschi@unibo.it
https://it.linkedin.com/in/francescobergamaschi

POWER Bl GEBRUIKERSGROEP

Session Feedback Event Feedback

	Slide 1
	Slide 2: Sponsors
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Why modifying the Filter Context?
	Slide 14: Why modifying the Filter Context?
	Slide 15: Why modifying the Filter Context?
	Slide 16: Why modifying the Filter Context?
	Slide 17: Why modifying the Filter Context?
	Slide 18: What modifications can be done to the Filter Context through CALCULATE?
	Slide 19: What modifications can be done to the Filter Context through CALCULATE?
	Slide 20: Filter and Filter Context Definition
	Slide 21: More on Filters
	Slide 22: More on Filters
	Slide 23: More on Filters
	Slide 24: More on Filters
	Slide 25: More on Filters
	Slide 26: More on Filters
	Slide 27: More on Filters
	Slide 28: OR between columns of differente tables
	Slide 29: OR between columns of differente tables
	Slide 30: More on Filters
	Slide 31: More on Filters
	Slide 32: More on Filters
	Slide 33: Filters vs Global Modifiers
	Slide 34: Filter Modifier
	Slide 35: 1 – Adding Filters explicitly and overwriting existing ones
	Slide 36: 1 – Adding Filters explicitly and overwriting existing ones
	Slide 37: 1 – Adding Filters explicitly and overwriting existing ones
	Slide 38: 1 – Adding Filters explicitly and intersecting existing ones
	Slide 39: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 40: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 41: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 42: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 43: 1 – Adding Filters implicitely and overwriting existing ones
	Slide 44: 1 – Adding Filters implicitely and intersecting existing ones
	Slide 45: 1 – Adding Filters implicitely and intersecting existing ones
	Slide 46: 2 – Removing Filters
	Slide 47: 2 – Removing Filters
	Slide 48: 2 – Removing Filters
	Slide 49: 3 – Modify the model Relationships Columns
	Slide 50: 4 – Modify the model Relationships cross-filter direction
	Slide 51: CALCULATE Global Modifiers
	Slide 52: CALCULATE Algorithm
	Slide 53: CALCULATE Algorithm
	Slide 54: CALCULATE Algorithm
	Slide 55: CALCULATE Algorithm
	Slide 56: CALCULATE Algorithm
	Slide 57: CALCULATE Algorithm
	Slide 58: CALCULATE Algorithm
	Slide 59: CALCULATE Algorithm
	Slide 60: CALCULATE Algorithm
	Slide 61: CALCULATE Algorithm
	Slide 62: CALCULATE Algorithm
	Slide 63: CALCULATE Algorithm
	Slide 64: CALCULATE Algorithm
	Slide 65: CALCULATE Algorithm
	Slide 66
	Slide 67

